ﻻ يوجد ملخص باللغة العربية
Aims: We characterise the properties of stars, dust, and gas and their spatial distribution in the central region of the Seyfert 2 galaxy NGC1068. Method: Our study is based on near-infrared (YJH, 0.95-1.650 um, R=350) long-slit spectroscopy observations of the central region of NGC 1068 with a 0.4 spatial resolution. We decomposed the observed continuum emission into three components: hot dust, stars, and scattered light from the central engine. We measured their contributions at various distances from the nucleus. We also measured fluxes and Doppler shifts for the emission lines in our spectrum to probe the physical conditions of the narrow line region. Results: Dust and stars are the main sources of continuum emission, but scattered light from the central engine has also been detected in the very central region. Together, these three components reproduce the observed continuum well. The dust emission is compatible with a 830~K blackbody. It has only been detected in the very central region and is not spatially resolved. The stellar content is ubiquitous. It harbours a 250 pc cusp centred around the nucleus, over-imposed on a young stellar background. The spectrum of the cusp is consistent with a 120 Myr old single stellar population. Finally, the emission lines exhibit a significant Doppler shift that is consistent with a radial outflow from the nucleus in a biconical structure. The $left[Fe IIright]$ behaviour strongly differs from other lines, indicating that it arises from a different structure.
Central cluster galaxies are the largest and most massive galaxies in the Universe. Although they host very old stellar populations, several studies found the existence of blue cores in some BCGs indicating ongoing star formation. We analyse VLT/X-Sh
We present 1.4 pc resolution observations of 256 GHz nuclear radio continuum and HCN ($J=3 to 2$) in the molecular torus of NGC 1068. The integrated radio continuum emission has a flat spectrum consistent with free-free emission and resolves into an
We present a 190-307 GHz broadband spectrum obtained with Z-Spec of NGC 1068 with new measurements of molecular rotational transitions. After combining our measurements with those previously published and considering the specific geometry of this Sey
We present Sauron 2D spectrography of the central 1.5 kpc of the nearby Sey2 galaxy NGC1068, encompassing the well-known NIR inner bar. We have successively disentangled the respective contributions of the ionized gas and stars, thus deriving their 2
Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 microns have revealed a weak absorption feature due to two lines of the molecular ion H3+. The observed wavelength of the feature corresponds to veloci