ﻻ يوجد ملخص باللغة العربية
An impurity immersed in a Bose-Einstein condensate is no longer accurately described by the Frohlich Hamiltonian as the coupling between the impurity and the boson bath gets stronger. We study the dominant effects of the two-phonon terms beyond the Frohlich model on the ground-state properties of the polaron using Feynmans variational path-integral approach. The previously reported discrepancy in the effective mass between the renormalization group approach and this theory is shown to be absent in the beyond-Frohlich model on the positive side of the Feshbach resonance. Self-trapping, characterized by a sharp and dramatic increase of the effective mass, is no longer observed for the repulsive polaron once the two-phonon interactions are included. For the attractive polaron we find a divergence of the ground-state energy and effective mass at weaker couplings than previously observed within the Frohlich model.
We develop a renormalization group approach for analyzing Frohlich polarons and apply it to a problem of impurity atoms immersed in a Bose-Einstein condensate of ultra cold atoms. Polaron energies obtained by our method are in excellent agreement wit
Grusdt et al. [New J. Phys. 19, 103035 (2017)] recently made a renormalization group study of a one-dimensional Bose polaron in cold atoms. Their study went beyond the usual Frohlich description, which includes only single-phonon processes, by includ
We present accurate results for optical conductivity of the three dimensional Frohlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum c
We propose a generalization of the Feynman path integral using squeezed coherent states. We apply this approach to the dynamics of Bose-Einstein condensates, which gives an effective low energy description that contains both a coherent field and a sq
Advancing our understanding of non-equilibrium phenomena in quantum many-body systems remains among the greatest challenges in physics. Here, we report on the experimental observation of a paradigmatic many-body problem, namely the non-equilibrium dy