ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Graph Embeddings via Sparse Transpose Proximities

116   0   0.0 ( 0 )
 نشر من قبل Zhewei Wei
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph embedding learns low-dimensional representations for nodes in a graph and effectively preserves the graph structure. Recently, a significant amount of progress has been made toward this emerging research area. However, there are several fundamental problems that remain open. First, existing methods fail to preserve the out-degree distributions on directed graphs. Second, many existing methods employ random walk based proximities and thus suffer from conflicting optimization goals on undirected graphs. Finally, existing factorization methods are unable to achieve scalability and non-linearity simultaneously. This paper presents an in-depth study on graph embedding techniques on both directed and undirected graphs. We analyze the fundamental reasons that lead to the distortion of out-degree distributions and to the conflicting optimization goals. We propose {em transpose proximity}, a unified approach that solves both problems. Based on the concept of transpose proximity, we design strap, a factorization based graph embedding algorithm that achieves scalability and non-linearity simultaneously. strap makes use of the {em backward push} algorithm to efficiently compute the sparse {em Personalized PageRank (PPR)} as its transpose proximities. By imposing the sparsity constraint, we are able to apply non-linear operations to the proximity matrix and perform efficient matrix factorization to derive the embedding vectors. Finally, we present an extensive experimental study that evaluates the effectiveness of various graph embedding algorithms, and we show that strap outperforms the state-of-the-art methods in terms of effectiveness and scalability.

قيم البحث

اقرأ أيضاً

Graph embeddings are a ubiquitous tool for machine learning tasks, such as node classification and link prediction, on graph-structured data. However, computing the embeddings for large-scale graphs is prohibitively inefficient even if we are interes ted only in a small subset of relevant vertices. To address this, we present an efficient graph coarsening approach, based on Schur complements, for computing the embedding of the relevant vertices. We prove that these embeddings are preserved exactly by the Schur complement graph that is obtained via Gaussian elimination on the non-relevant vertices. As computing Schur complements is expensive, we give a nearly-linear time algorithm that generates a coarsened graph on the relevant vertices that provably matches the Schur complement in expectation in each iteration. Our experiments involving prediction tasks on graphs demonstrate that computing embeddings on the coarsened graph, rather than the entire graph, leads to significant time savings without sacrificing accuracy.
Dense embedding models are commonly deployed in commercial search engines, wherein all the document vectors are pre-computed, and near-neighbor search (NNS) is performed with the query vector to find relevant documents. However, the bottleneck of ind exing a large number of dense vectors and performing an NNS hurts the query time and accuracy of these models. In this paper, we argue that high-dimensional and ultra-sparse embedding is a significantly superior alternative to dense low-dimensional embedding for both query efficiency and accuracy. Extreme sparsity eliminates the need for NNS by replacing them with simple lookups, while its high dimensionality ensures that the embeddings are informative even when sparse. However, learning extremely high dimensional embeddings leads to blow up in the model size. To make the training feasible, we propose a partitioning algorithm that learns such high dimensional embeddings across multiple GPUs without any communication. This is facilitated by our novel asymmetric mixture of Sparse, Orthogonal, Learned and Random (SOLAR) Embeddings. The label vectors are random, sparse, and near-orthogonal by design, while the query vectors are learned and sparse. We theoretically prove that our way of one-sided learning is equivalent to learning both query and label embeddings. With these unique properties, we can successfully train 500K dimensional SOLAR embeddings for the tasks of searching through 1.6M books and multi-label classification on the three largest public datasets. We achieve superior precision and recall compared to the respective state-of-the-art baselines for each of the tasks with up to 10 times faster speed.
Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyper bolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.
Knowledge graph (KG) embedding aims at embedding entities and relations in a KG into a lowdimensional latent representation space. Existing KG embedding approaches model entities andrelations in a KG by utilizing real-valued , complex-valued, or hype rcomplex-valued (Quaternionor Octonion) representations, all of which are subsumed into a geometric algebra. In this work,we introduce a novel geometric algebra-based KG embedding framework, GeomE, which uti-lizes multivector representations and the geometric product to model entities and relations. Ourframework subsumes several state-of-the-art KG embedding approaches and is advantageouswith its ability of modeling various key relation patterns, including (anti-)symmetry, inversionand composition, rich expressiveness with higher degree of freedom as well as good general-ization capacity. Experimental results on multiple benchmark knowledge graphs show that theproposed approach outperforms existing state-of-the-art models for link prediction.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use graph sampling or layer-wise sampling techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine. The codes of GBP can be found at https://github.com/chennnM/GBP .

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا