ترغب بنشر مسار تعليمي؟ اضغط هنا

A Priori Analysis of a Higher Order Nonlinear Elasticity Model for an Atomistic Chain with Periodic Boundary Condition

56   0   0.0 ( 0 )
 نشر من قبل Yangshuai Wang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear elastic models are widely used to describe the elastic response of crystalline solids, for example, the well-known Cauchy-Born model. While the Cauchy-Born model only depends on the strain, effects of higher order strain gradients are significant and higher order continuum models are preferred, in various applications such as defect dynamics and modeling of carbon nanotubes. In this paper, we rigorously derive a higher order nonlinear elasticity model for crystals from its atomistic description in one dimension. We show that, compared to the second order accuracy of the Cauchy-Born model, the higher order continuum model in this paper is of fourth oder accuracy with respect to the interatomic spacing in the thermal dynamic limit. In addition, we discuss the key issues for the derivation of higher order continuum models in more general cases. The theoretical convergence results are demonstrated by numerical experiments.



قيم البحث

اقرأ أيضاً

In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and th ree space dimensions, it supports general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary approximation order, and the resolution cost can be reduced by statically condensing a large subset of the unknowns for lineariz
73 - Brendan Keith 2020
A number of non-standard finite element methods have been proposed in recent years, each of which derives from a specific class of PDE-constrained norm minimization problems. The most notable examples are $mathcal{L}mathcal{L}^*$ methods. In this wor k, we argue that all high-order methods in this class should be expected to deliver substandard uniform h-refinement convergence rates. In fact, one may not even see rates proportional to the polynomial order $p > 1$ when the exact solution is a constant function. We show that the convergence rate is limited by the regularity of an extraneous Lagrange multiplier variable which naturally appears via a saddle-point analysis. In turn, limited convergence rates appear because the regularity of this Lagrange multiplier is determined, in part, by the geometry of the domain. Numerical experiments support our conclusions.
A hybrid surface integral equation partial differential equation (SIE-PDE) formulation without the boundary condition requirement is proposed to solve the electromagnetic problems. In the proposed formulation, the computational domain is decomposed i nto two emph{overlapping} domains: the SIE and PDE domains. In the SIE domain, complex structures with piecewise homogeneous media, e.g., highly conductive media, are included. An equivalent model for those structures is constructed through replacing them by the background medium and introducing a surface equivalent electric current density on an enclosed boundary to represent their electromagnetic effects. The remaining computational domain and homogeneous background medium replaced domain consist of the PDE domain, in which inhomogeneous or non-isotropic media are included. Through combining the surface equivalent electric current density and the inhomogeneous Helmholtz equation, a hybrid SIE-PDE formulation is derived. Unlike other hybrid formulations, where the transmission condition is usually used, no boundary conditions are required in the proposed SIE-PDE formulation, and it is mathematically equivalent to the original physical model. Through careful construction of basis functions to expand electric fields and the equivalent current density, the discretized formulation is compatible on the interface of the SIE and PDE domain. Finally, its accuracy and efficiency are validated through two numerical examples. Results show that the proposed SIE-PDE formulation can obtain accurate results including both near and far fields, and significant performance improvements in terms of CPU time and memory consumption compared with the FEM are achieved.
This paper is devoted to studying a type of contact problems modeled by hemivariational inequalities with small periodic coefficients appearing in PDEs, and the PDEs we considered are linear, second order and uniformly elliptic. Under the assumptions , it is proved that the original problem can be homogenized, and the solution weakly converges. We derive an $O(epsilon^{1/2})$ estimation which is pivotal in building the computational framework. We also show that Robin problems--- a special case of contact problems, it leads to an $O(epsilon)$ estimation in $L^2$ norm. Our computational framework is based on finite element methods, and the numerical analysis is given, together with experiments to convince the estimation.
This paper provides an a~priori error analysis of a localized orthogonal decomposition method (LOD) for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the model problem is stationary and satisfies a quantitative decorrelation assumption in form of the spectral gap inequality, then the expected $L^2$ error of the method can be estimated, up to logarithmic factors, by $H+(varepsilon/H)^{d/2}$; $varepsilon$ being the small correlation length of the random coefficient and $H$ the width of the coarse finite element mesh that determines the spatial resolution. The proof bridges recent results of numerical homogenization and quantitative stochastic homogenization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا