ترغب بنشر مسار تعليمي؟ اضغط هنا

Lijiang 2.4-meter Telescope and its Instruments

117   0   0.0 ( 0 )
 نشر من قبل Chuanjun Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lijiang 2.4-meter Telescope(LJT), the largest common-purpose optical telescope in China, has been applied to the world-wide astronomers since 2008. It is located at Gaomeigu site, Lijiang Observatory(LJO), the southwest of China. The site has very good observational conditions. Since 10-year operation, several instruments have been equipped on the LJT. Astronomers can perform both photometric and spectral observations. The main scientific goals of LJT include photometric and spectral evolution of supernova, reverberation mapping of active galactic nucleus, physical properties of binary star and near-earth object(comet and asteroid), identification of exoplanet, and all kinds of transients. Until now, the masses of 41 high accretion rate black holes have been measured, and more than 168 supernova have been identified by the LJT. More than 190 papers related to the LJT have been published. In this paper, the general observation condition of the Gaomeigu site is introduced at first. Then, the LJT structure is described in detail, including the optical, mechanical, motion and control system. The specification of all the instruments, and some detailed parameters of the YFOSC is also presented. Finally, some important scientific results and future expectations are summarized.



قيم البحث

اقرأ أيضاً

We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modifie
The World Space Observatory for Ultraviolet (WSO-UV) is an orbital optical telescope with a 1.7 m-diameter primary mirror currently under development. The WSO-UV is aimed to operate in the 115-310 nm UV spectral range. Its two major science instrumen ts are UV spectrographs and a UV imaging field camera with filter wheels. The WSO-UV project is currently in the implementation phase, with a tentative launch date in 2023. Recently, two additional instruments devoted to exoplanets have been proposed for WSO-UV, which are the focus of this paper. UVSPEX, a UV-Spectrograph for Exoplanets, aims to determine atomic hydrogen and oxygen abundance in the exospheres of terrestrial exoplanets. The spectral range is 115-130 nm which enables simultaneous measurement of hydrogen and oxygen emission intensities during an exoplanet transit. Study of exosphere transit photometric curves can help differentiate among different types of rocky planets. The exospheric temperature of an Earth-like planet is much higher than that of a Venus-like planet, because of the low mixing ratio of the dominant coolant (CO2) in the upper atmosphere of the former, which causes a large difference in transit depth at the oxygen emission line. Thus, whether the terrestrial exoplanet is Earth-like, Venus-like, or other can be determined. SCEDI, a Stellar Coronagraph for Exoplanet Direct Imaging is aimed to directly detect the starlight reflected from exoplanets orbiting their parent stars or from the stellar vicinity including circumstellar discs, dust, and clumps. SCEDI will create an achromatic (optimized to 420-700 nm wavelength range), high-contrast stellocentric coronagraphic image of a circumstellar vicinity. The two instruments: UVSPEX and SCEDI, share common power and control modules. The present communication outlines the science goals of both proposed instruments and explains some of their engineering features.
The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMTs science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the Universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ), the University of California, the Association of Canadian Universities for Research in Astronomy (ACURA) and US associate partner, the Association of Universities for Research in Astronomy (AURA).
The Xinglong 2.16-m reflector is the first 2-meter class astronomical telescope in China. It was jointly designed and built by the Nanjing Astronomical Instruments Factory (NAIF), Beijing Astronomical Observatory (now National Astronomical Observator ies, Chinese Academy of Sciences, NAOC) and Institute of Automation, Chinese Academy of Sciences in 1989. It is Ritchey-Chr{e}tien (R-C) reflector on an English equatorial mount and the effective aperture is 2.16 meters. It had been the largest optical telescope in China for $sim18$ years until the Guoshoujing Telescope (also called Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) and the Lijiang 2.4-m telescope were built. At present, there are three main instruments on the Cassegrain focus available: the Beijing Faint Object Spectrograph and Camera (BFOSC) for direct imaging and low resolution ($Rsim500-2000$) spectroscopy, the spectrograph made by Optomechanics Research Inc. (OMR) for low resolution spectroscopy (the spectral resolutions are similar to those of BFOSC) and the fiber-fed High Resolution Spectrograph (HRS, $Rsim30000-65000$). The telescope is widely open to astronomers all over China as well as international astronomical observers. Each year there are more than 40 ongoing observing projects, including 6-8 key projects. Recently, some new techniques and instruments (e.g., astro-frequency comb calibration system, polarimeter and adaptive optics) have been or will be tested on the telescope to extend its observing abilities.
ASTRI SST-2M is the end-to-end prototype telescope of the Italian National Institute of Astro- physics, INAF, designed to investigate the 10-100 TeV band in the framework of the Cherenkov Telescope Array, CTA. The ASTRI SST-2M telescope has been inst alled in Italy in September 2014, at the INAF ob- serving station located at Serra La Nave on Mount Etna. The telescope is foreseen to be completed and fully operative in spring 2015 including auxiliary instrumentation needed to support both operations and data anal- ysis. In this contribution we present the current status of a sub-set of the auxiliary instruments that are being used at the Serra La Nave site, namely an All Sky Camera, an Electric Field Meter and a Raman Lidar devoted, together with further instrumentation, to the monitoring of the atmospheric and environmental conditions. The data analysis techniques under development for these instruments could be applied at the CTA sites, where similar auxiliary instrumentation will be installed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا