ترغب بنشر مسار تعليمي؟ اضغط هنا

The Xinglong 2.16-m Telescope: Current Instruments and Scientific Projects

72   0   0.0 ( 0 )
 نشر من قبل Zhou Fan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Xinglong 2.16-m reflector is the first 2-meter class astronomical telescope in China. It was jointly designed and built by the Nanjing Astronomical Instruments Factory (NAIF), Beijing Astronomical Observatory (now National Astronomical Observatories, Chinese Academy of Sciences, NAOC) and Institute of Automation, Chinese Academy of Sciences in 1989. It is Ritchey-Chr{e}tien (R-C) reflector on an English equatorial mount and the effective aperture is 2.16 meters. It had been the largest optical telescope in China for $sim18$ years until the Guoshoujing Telescope (also called Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) and the Lijiang 2.4-m telescope were built. At present, there are three main instruments on the Cassegrain focus available: the Beijing Faint Object Spectrograph and Camera (BFOSC) for direct imaging and low resolution ($Rsim500-2000$) spectroscopy, the spectrograph made by Optomechanics Research Inc. (OMR) for low resolution spectroscopy (the spectral resolutions are similar to those of BFOSC) and the fiber-fed High Resolution Spectrograph (HRS, $Rsim30000-65000$). The telescope is widely open to astronomers all over China as well as international astronomical observers. Each year there are more than 40 ongoing observing projects, including 6-8 key projects. Recently, some new techniques and instruments (e.g., astro-frequency comb calibration system, polarimeter and adaptive optics) have been or will be tested on the telescope to extend its observing abilities.

قيم البحث

اقرأ أيضاً

The Beijing Faint Object Spectrograph and Camera (BFOSC) is one of the most important instruments of the 2.16-m telescope of the Xinglong Observatory. Every year there are ~ 20 SCI-papers published based on the observational data of this telescope. I n this work, we have systemically measured the total efficiency of the BFOSC of the 2.16-m reflector, based on the observations of two ESO flux standard stars. We have obtained the total efficiencies of the BFOSC instrument of different grisms with various slit widths in almost all ranges, and analysed the factors which effect the efficiency of telescope and spectrograph. For the astronomical observers, the result will be useful for them to select a suitable slit width, depending on their scientific goals and weather conditions during the observation; For the technicians, the result will help them systemically find out the real efficiency of telescope and spectrograph, and further to improve the total efficiency and observing capacity of the telescope technically.
The recently commissioned 3.6-m Devasthal optical telescope has been used for various tests and science observations using three main instruments, namely, a charge-coupled device camera, a near-infrared camera, and an optical imager-cum-spectrograph. The published results from these instruments assert that the performance of the telescope at the Devasthal site is at par with the expectations. These back-end instruments open up vast opportunities for high-sensitivity observations of the celestial sky with the telescope. This paper provides a summary of the existing back-end instruments and attempts to highlight the importance of the Devasthal optical telescope in synergy with other telescopes operating at different wavelengths.
The 85-cm telescope at the Xinglong station is a well-operated prime focus system with high science outputs. The telescope has been upgraded since 2014 with new corrector, filters and camera, which are provided by Beijing Normal University (BNU). The filter set is Johnson-Cousins UBVRI system. We report the test results of the new system including the bias, dark current, linearity, gain and readout noise of the CCD camera . Then we derive accurate instrumental calibration coefficients in UBVRI bands with Landolt standard stars in the photometric nights. Finally, we give the limiting magnitudes with various exposure time and signal-to-noise ratio for observers as references.
Lijiang 2.4-meter Telescope(LJT), the largest common-purpose optical telescope in China, has been applied to the world-wide astronomers since 2008. It is located at Gaomeigu site, Lijiang Observatory(LJO), the southwest of China. The site has very go od observational conditions. Since 10-year operation, several instruments have been equipped on the LJT. Astronomers can perform both photometric and spectral observations. The main scientific goals of LJT include photometric and spectral evolution of supernova, reverberation mapping of active galactic nucleus, physical properties of binary star and near-earth object(comet and asteroid), identification of exoplanet, and all kinds of transients. Until now, the masses of 41 high accretion rate black holes have been measured, and more than 168 supernova have been identified by the LJT. More than 190 papers related to the LJT have been published. In this paper, the general observation condition of the Gaomeigu site is introduced at first. Then, the LJT structure is described in detail, including the optical, mechanical, motion and control system. The specification of all the instruments, and some detailed parameters of the YFOSC is also presented. Finally, some important scientific results and future expectations are summarized.
We report the current status of the 1.85-m mm-submm telescope installed at the Nobeyama Radio Observatory (altitude 1400 m) and the future plan. The scientific goal is to reveal the physical/chemical properties of molecular clouds in the Galaxy by ob taining large-scale distributions of molecular gas with an angular resolution of several arcminutes. A semi-automatic observation system created mainly in Python on Linux-PCs enables effective operations. A large-scale CO $J=$2--1 survey of the molecular clouds (e.g., Orion-A/B, Cygnus-X/OB7, Taurus-California-Perseus complex, and Galactic Plane), and a pilot survey of emission lines from minor molecular species toward Orion clouds have been conducted so far. The telescope also is providing the opportunities for technical demonstrations of new devices and ideas. For example, the practical realizations of PLM (Path Length Modulator) and waveguide-based sideband separating filter, installation of the newly designed waveguide-based circular polarizer and OMT (Orthomode Transducer), and so on. As the next step, we are now planning to relocate the telescope to San Pedro de Atacama in Chile (altitude 2500 m), and are developing very wideband receiver covering 210--375 GHz (corresponding to Bands 6--7 of ALMA) and full-automatic observation system. The new telescope system will provide large-scale data in the spatial and frequency domain of molecular clouds of Galactic plane and Large/Small Magellanic Clouds at the southern hemisphere. The data will be precious for the comparison with those of extra-galactic ones that will be obtained with ALMA as the Bands 6/7 are the most efficient frequency bands for the surveys in extra-galaxies for ALMA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا