ترغب بنشر مسار تعليمي؟ اضغط هنا

Catalyst-Free And Morphology-Controlled Growth Of 2D Perovskite Nanowires for Polarized Light Detection

75   0   0.0 ( 0 )
 نشر من قبل Sufei Shi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) perovskites or Ruddleson Popper (RP) perovskites have emerged as a class of material inheriting the superior optoelectronic properties of two different materials: perovskites and 2D materials. The large exciton binding energy and natural quantum well structure of 2D perovskite not only make these materials ideal platforms to study light-matter interactions, but also render them suitable for fabrication of various functional optoelectronic devices. Nanoscale structuring and morphology control have led to semiconductors with enhanced functionalities. For example, nanowires of semiconducting materials have been extensively used for important applications like lasing and sensing. Catalyst-assisted Vapor Liquid Solid (VLS) techniques, and template assisted growth, have conventionally been used for nanowire growth. However, catalyst and template-free scalable growth with morphology control of 2D perovskites have remained elusive. In this manuscript, we demonstrate a facile approach for morphology-controlled growth of high-quality nanowires of 2D perovskite, (BA)2PbI4. We demonstrate that the photoluminescence (PL) from the nanowires are highly polarized with a polarization ratio as large as ~ 0.73, which is one of the largest reported for perovskites. We further show that the photocurrent from the device based on the nanowire/graphene heterostructure is also sensitive to the polarization of the incident light with the photocurrent anisotropy ratio of ~3.62 (much larger than the previously reported best value of 2.68 for perovskite nanowires), thus demonstrating the potential of these nanowires as highly efficient photodetectors of polarized light.

قيم البحث

اقرأ أيضاً

A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (111) silicon substrates using the vapor-liquid-solid method by molecular beam epitaxy is reported. We develop an effective and mask-free method based on co ntrolling the number and the size of the Au-In catalyst droplets in addition to the conditions for the NW nucleation. We show that the NW density can be tuned with values in the range of 18 {mu}m-2 to < 0.1 {mu}m-2 by the suitable choice of the In/Au catalyst beam equivalent pressure (BEP) ratio, by the phosphorous BEP and the growth temperature. The same degree of control is transferred to InAs/InP quantum dot-nanowires, taking advantage of the ultra-low density to study by micro-photoluminescence the optical properties of a single quantum dot-nanowires emitting in the telecom band monolithically grown on silicon. Optical spectroscopy at cryogenic temperature successfully confirmed the relevance of our method to excite single InAs quantum dots on the as-grown sample, which opens the path for large-scale applications based on single quantum dot-nanowire devices integrated on silicon.
The basis for superconducting electronics can broadly be divided between two technologies: the Josephson junction and the superconducting nanowire. While the Josephson junction (JJ) remains the dominant technology due to its high speed and low power dissipation, recently proposed nanowire devices offer improvements such as gain, high fanout, and compatibility with CMOS circuits. Despite these benefits, nanowire-based electronics have largely been limited to binary operations, with devices switching between the superconducting state and a high-impedance resistive state dominated by uncontrolled hotspot dynamics. Unlike the JJ, they cannot increment an output through successive switching, and their operation speeds are limited by their slow thermal reset times. Thus, there is a need for an intermediate device with the interfacing capabilities of a nanowire but a faster, moderated response allowing for modulation of the output. Here, we present a nanowire device based on controlled fluxon transport. We show that the device is capable of responding proportionally to the strength of its input, unlike other nanowire technologies. The device can be operated to produce a multilevel output with distinguishable states, which can be tuned by circuit parameters. Agreement between experimental results and electrothermal circuit simulations demonstrates that the device is classical and may be readily engineered for applications including use as a multilevel memory.
135 - Jun Wang , Junze Li , Shangui Lan 2018
Two-dimensional (2D) organic-inorganic perovskites have recently attracted increasing attention due to their great environmental stability, remarkable quantum confinement effect and layered characteristic. Heterostructures consisting of 2D layered pe rovskites are expected to exhibit new physical phenomena inaccessible to the single 2D perovskites and can greatly extend their functionalities for novel electronic and optoelectronic applications. Herein, we develop a novel solution method to synthesize 2D perovskite single-crystals with the centimeter size, high phase purity, controllable junction depth, high crystalline quality and great stability for highly narrow dual-band photodetectors. On the basis of the different lattice constant, solubility and growth rate between different n number, the newly designed synthesis method allows to first grow n=1 perovskite guided by the self-assembled layer of the organic cations at the water-air interface and subsequently n=2 layer is formed via diffusion process. Such growth process provides an efficient away for us to readily obtain 2D perovskite heterostructural single-crystals with various thickness and junction depth by controlling the concentration, reaction temperature and time. Photodetectors based on such heterostructural single crystal plates exhibit extremely low dark current, high on-off current ratio, and highly narrow dual-band spectral response with a full-width at half-maximum of 20 nm at 540 nm and 34 nm at 610 nm. In particular, the synthetic strategy is general for other 2D perovskites and the narrow dual-band spectral response with all full-width at half-maximum below 40 nm can be continuously tuned from red to blue by properly changing the halide compositions.
Perovskite-based optoelectronic devices have gained significant attention due to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes (LEDs), non-radiative charge carrier re combination has limited electroluminescence (EL) efficiency. Here we demonstrate perovskite-polymer bulk heterostructure LEDs exhibiting record-high external quantum efficiencies (EQEs) exceeding 20%, and an EL half-life of 46 hours under continuous operation. This performance is achieved with an emissive layer comprising quasi-2D and 3D perovskites and an insulating polymer. Transient optical spectroscopy reveals that photogenerated excitations at the quasi-2D perovskite component migrate to lower-energy sites within 1 ps. The dominant component of the photoluminescence (PL) is primarily bimolecular and is characteristic of the 3D regions. From PL quantum efficiency and transient kinetics of the emissive layer with/without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated. Light outcoupling from planar LEDs, as used in OLED displays, generally limits EQE to 20-30%, and we model our reported EL efficiency of over 20% in the forward direction to indicate the internal quantum efficiency (IQE) to be close to 100%. Together with the low drive voltages needed to achieve useful photon fluxes (2-3 V for 0.1-1 mA/cm2), these results establish that perovskite-based LEDs have significant potential for light-emission applications.
Growth of GaAs and InGaAs nanowires by the group-III assisted Molecular Beam Epitaxy growth method is studied in dependence of growth temperature, with the objective of maximizing the indium incorporation. Nanowire growth was achieved for growth temp eratures as low as 550{deg}C. The incorporation of indium was studied by low temperature micro-photoluminescence spectroscopy, Raman spectroscopy and electron energy loss spectroscopy. The results show that the incorporation of indium lowering the growth temperature does not have an effect in increasing the indium concentration in the bulk of the nanowire, which is limited to 3-5%. For growth temperatures below 575{deg}C, indium rich regions form at the surface of the nanowires as a consequence of the radial growth. This results in the formation of quantum dots, which exhibit extremely sharp luminescence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا