ترغب بنشر مسار تعليمي؟ اضغط هنا

48 Crepant Paths to $text{SU}(2)!times!text{SU}(3)$

264   0   0.0 ( 0 )
 نشر من قبل Monica Jinwoo Kang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study crepant resolutions of Weierstrass models of $text{SU}(2)!times!text{SU}(3)$-models, whose gauge group describes the non-abelian sector of the Standard Model. The $text{SU}(2)!times!text{SU}(3)$-models are elliptic fibrations characterized by the collision of two Kodaira fibers with dual graphs that are affine Dynkin diagrams of type $widetilde{text{A}}_1$ and $widetilde{text{A}}_2$. Once we eliminate those collisions that do not have crepant resolutions, we are left with six distinct collisions that are related to each other by deformations. Each of these six collisions has eight distinct crepant resolutions whose flop diagram is a hexagon with two legs attached to two adjacent nodes. Hence, we consider 48 distinct resolutions that are connected to each other by deformations and flops. We determine topological invariants---such as Euler characteristics, Hodge numbers, and triple intersections of fibral divisors---for each of the crepant resolutions. We analyze the physics of these fibrations when used as compactifications of M-theory and F-theory on Calabi--Yau threefolds yielding 5d ${mathcal N}=1$ and 6d ${mathcal N}=(1,0)$ supergravity theories respectively. We study the 5d prepotential in the Coulomb branch of the theory and check that the six-dimensional theory is anomaly-free and compatible with a 6d uplift from a 5d theory.



قيم البحث

اقرأ أيضاً

We discuss proton decay in a recently proposed model of supersymmetric hybrid inflation based on the gauge symmetry $SU(4)_c times SU(2)_L times SU(2)_R$. A $U(1), R$ symmetry plays an essential role in realizing inflation as well as in eliminating s ome undesirable baryon number violating operators. Proton decay is primarily mediated by a variety of color triplets from chiral superfields, and it lies in the observable range for a range of intermediate scale masses for the triplets. The decay modes include $p rightarrow e^{+}(mu^+) + pi^0$, $p rightarrow bar{ u} + pi^{+}$, $p rightarrow K^0 + e^+(mu^{+})$, and $p rightarrow K^+ + bar{ u}$, with a lifetime estimate of order $10^{34}-10^{36}$ yrs and accessible at Hyper-Kamiokande and future upgrades. The unification at the Grand Unified Theory (GUT) scale $M_{rm GUT}$ ($sim 10^{16}$ GeV) of the Minimal Supersymmetric Standard Model (MSSM) gauge couplings is briefly discussed.
We explore the sparticle mass spectra including LSP dark matter within the framework of supersymmetric $SU(4)_c times SU(2)_L times SU(2)_R$ (422) models, taking into account the constraints from extensive LHC and cold dark matter searches. The soft supersymmetry-breaking parameters at $M_{GUT}$ can be non-universal, but consistent with the 422 symmetry. We identify a variety of coannihilation scenarios compatible with LSP dark matter, and study the implications for future supersymmetry searches and the ongoing muon g-2 experiment.
The next to leading order chiral corrections to the $SU(2)times SU(2)$ Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) inco rporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, $delta_pi$, the value $delta_pi = (6.2, pm 1.6)%$. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate $<0|bar{u} u|0> simeq <0|bar{d} d|0> equiv <0|bar{q} q|0>|_{2,mathrm{GeV}} = (- 267 pm 5 MeV)^3$. As a byproduct, the chiral perturbation theory (unphysical) low energy constant $H^r_2$ is predicted to be $H^r_2 ( u_chi = M_rho) = - (5.1 pm 1.8)times 10^{-3}$, or $H^r_2 ( u_chi = M_eta) = - (5.7 pm 2.0)times 10^{-3}$.
We compute characteristic numbers of crepant resolutions of Weierstrass models corresponding to elliptically fibered fourfolds $Y$ dual in F-theory to a gauge theory with gauge group $G$. In contrast to the case of fivefolds, Chern and Pontryagin num bers of fourfolds are invariant under crepant birational maps. It follows that Chern and Pontryagin numbers are independent on a choice of a crepant resolution. We present the results for the Euler characteristic, the holomorphic genera, the Todd-genus, the $L$-genus, the $hat{A}$-genus, and the curvature invariant $X_8$ that appears in M-theory. We also show that certain characteristic classes are independent on the choice of the Kodaria fiber characterizing the group $G$. That is the case of $int_Y c_1^2 c_2$, the arithmetic genus, and the $hat{A}$-genus. Thus, it is enough to know $int_Y c_2^2$ and the Euler characteristic $chi(Y)$ to determine all the Chern numbers of an elliptically fibered fourfold. We consider the cases of $G=$ SU($n$) for ($n=2,3,4,5,6,7$), USp($4$), Spin($7$), Spin($8$), Spin($10$), G$_2$, F$_4$, E$_6$, E$_7$, or E$_8$.
351 - Ernest Ma 2017
An extra $SU(2)_D$ gauge factor is added to the well-known left-right extension of the standard model (SM) of quarks and leptons. Under $SU(2)_L times SU(2)_R times SU(2)_D$, two fermion bidoublets $(2,1,2)$ and $(1,2,2)$ are assumed. The resulting m odel has an automatic dark $U(1)$ symmetry, in the same way that the SM has automatic baryon and lepton $U(1)$ symmetries. Phenomenological implications are discussed, as well as the possible origin of this proposal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا