ﻻ يوجد ملخص باللغة العربية
The next to leading order chiral corrections to the $SU(2)times SU(2)$ Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, $delta_pi$, the value $delta_pi = (6.2, pm 1.6)%$. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate $<0|bar{u} u|0> simeq <0|bar{d} d|0> equiv <0|bar{q} q|0>|_{2,mathrm{GeV}} = (- 267 pm 5 MeV)^3$. As a byproduct, the chiral perturbation theory (unphysical) low energy constant $H^r_2$ is predicted to be $H^r_2 ( u_chi = M_rho) = - (5.1 pm 1.8)times 10^{-3}$, or $H^r_2 ( u_chi = M_eta) = - (5.7 pm 2.0)times 10^{-3}$.
Next to leading order corrections to the $SU(3) times SU(3)$ Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the
We discuss proton decay in a recently proposed model of supersymmetric hybrid inflation based on the gauge symmetry $SU(4)_c times SU(2)_L times SU(2)_R$. A $U(1), R$ symmetry plays an essential role in realizing inflation as well as in eliminating s
We explore the sparticle mass spectra including LSP dark matter within the framework of supersymmetric $SU(4)_c times SU(2)_L times SU(2)_R$ (422) models, taking into account the constraints from extensive LHC and cold dark matter searches. The soft
We study crepant resolutions of Weierstrass models of $text{SU}(2)!times!text{SU}(3)$-models, whose gauge group describes the non-abelian sector of the Standard Model. The $text{SU}(2)!times!text{SU}(3)$-models are elliptic fibrations characterized b
The spin-charge-family theory predicts the existence of the fourth family to the observed three. The $4 times 4$ mass matrices --- determined by the nonzero vacuum expectation values of the two triplet scalars, the gauge fields of the two groups of $