ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact simulation of first exit times for one-dimensional diffusion processes

164   0   0.0 ( 0 )
 نشر من قبل Samuel Herrmann
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability... The usual procedure is to use discretiza-tion schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study are the Girsanov transformation, the convergent series method for the simulation of random variables and the classical rejection sampling. The efficiency of the method is described through theoretical results and numerical examples.



قيم البحث

اقرأ أيضاً

82 - Samuel Herrmann 2019
In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm was already introduced in both the Brownian context and in the Ornstein-Uhlenbeck context. Here the aim is therefore to generalize this efficient numerical approach in order to obtain an approximation of both the exit time and position for either a general linear diffusion or a growth diffusion. The efficiency of the method is described with particular care through theoretical results and numerical examples.
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corre ctions ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an altern ating renewal process. Bounds to the first-passage-time density and distribution function are obtained, and a simulation procedure to estimate first-passage-time densities is constructed. Examples of applications to problems in environmental sciences and mathematical finance are also provided.
We exhibit an exact simulation algorithm for the supremum of a stable process over a finite time interval using dominated coupling from the past (DCFTP). We establish a novel perpetuity equation for the supremum (via the representation of the concave majorants of Levy processes) and apply it to construct a Markov chain in the DCFTP algorithm. We prove that the number of steps taken backwards in time before the coalescence is detected is finite. We analyse numerically the performance of the algorithm (the code, written in Julia 1.0, is available on GitHub).
71 - Guomin Liu 2018
Let $mathbb{hat{E}}$ be the upper expectation of a weakly compact but non-dominated family $mathcal{P}$ of probability measures. Assume that $Y$ is a $d$-dimensional $mathcal{P}$-semimartingale under $mathbb{hat{E}}$. Given an open set $Qsubsetmathbb {R}^{d}$, the exit time of $Y$ from $Q$ is defined by [ {tau}_{Q}:=inf{tgeq0:Y_{t}in Q^{c}}. ] The main objective of this paper is to study the quasi-continuity properties of ${tau}_{Q}$ under the nonlinear expectation $mathbb{hat{E}}$. Under some additional assumptions on the growth and regularity of $Y$, we prove that ${tau}_{Q}wedge t$ is quasi-continuous if $Q$ satisfies the exterior ball condition. We also give the characterization of quasi-continuous processes and related properties on stopped processes. In particular, we get the quasi-continuity of exit times for multi-dimensional $G$-martingales, which nontrivially generalizes the previous one-dimensional result of Song.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا