ترغب بنشر مسار تعليمي؟ اضغط هنا

Swirling fluid flow in flexible, expandable elastic tubes: variational approach, reductions and integrability

358   0   0.0 ( 0 )
 نشر من قبل Rossen Ivanov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many engineering and physiological applications deal with situations when a fluid is moving in flexible tubes with elastic walls. In the real-life applications like blood flow, there is often an additional complexity of vorticity being present in the fluid. We present a theory for the dynamics of interaction of fluids and structures. The equations are derived using the variational principle, with the incompressibility constraint of the fluid giving rise to a pressure-like term. In order to connect this work with the previous literature, we consider the case of inextensible and unshearable tube with a straight centerline. In the absence of vorticity, our model reduces to previous models considered in the literature, yielding the equations of conservation of fluid momentum, wall momentum and the fluid volume. We show that even when the vorticity is present, but is kept at a constant value, the case of an inextensible, unshearable and straight tube with elastics walls carrying a fluid allows an alternative formulation, reducing to a single compact equation for the back-to-labels map instead of three conservation equations. That single equation shows interesting instability in solutions when the vorticity exceeds a certain threshold. Furthermore, the equation in stable regime can be reduced to Boussinesq-type, KdV and Monge-Amp`ere equations equations in several appropriate limits, namely, the first two in the limit of long time and length scales and the third one in the additional limit of the small cross-sectional area. For the unstable regime, we numerical solutions demonstrate the spontaneous appearance of large oscillations in the cross-sectional area.



قيم البحث

اقرأ أيضاً

We present a theory for the three-dimensional evolution of tubes with expandable walls conveying fluid. Our theory can accommodate arbitrary deformations of the tube, arbitrary elasticity of the walls, and both compressible and incompressible flows i nside the tube. We also present the theory of propagation of shock waves in such tubes and derive the conservation laws and Rankine-Hugoniot conditions in arbitrary spatial configuration of the tubes, and compute several examples of particular solutions. The theory is derived from a variational treatment of Cosserat rod theory extended to incorporate expandable walls and moving flow inside the tube. The results presented here are useful for biological flows and industrial applications involving high speed motion of gas in flexible tubes.
We report the experimental evidence of the existence of a random attractor in a fully developed turbulent swirling flow. By defining a global observable which tracks the asymmetry in the flux of angular momentum imparted to the flow, we can first rec onstruct the associated turbulent attractor and then follow its route towards chaos. We further show that the experimental attractor can be modeled by stochastic Duffing equations, that match the quantitative properties of the experimental flow, namely the number of quasi-stationary states and transition rates among them, the effective dimensions, and the continuity of the first Lyapunov exponents. Such properties can neither be recovered using deterministic models nor using stochastic differential equations based on effective potentials obtained by inverting the probability distributions of the experimental global observables. Our findings open the way to low dimensional modeling of systems featuring a large number of degrees of freedom and multiple quasi-stationary states.
Many parts of biological organisms are comprised of deformable porous media. The biological media is both pliable enough to deform in response to an outside force and can deform by itself using the work of an embedded muscle. For example, the recent work (Ludeman et al., 2014) has demonstrated interesting sneezing dynamics of a freshwater sponge, when the sponge contracts and expands to clear itself from surrounding polluted water. We derive the equations of motion for the dynamics of such an active porous media (i.e., a deformable porous media that is capable of applying a force to itself with internal muscles), filled with an incompressible fluid. These equations of motion extend the earlier derived equation for a passive porous media filled with an incompressible fluid. We use a variational approach with a Lagrangian written as the sum of terms representing the kinetic and potential energy of the elastic matrix, and the kinetic energy of the fluid, coupled through the constraint of incompressibility. We then proceed to extend this theory by computing the case when both the active porous media and the fluid are incompressible, with the porous media still being deformable, which is often the case for biological applications. For the particular case of a uniform initial state, we rewrite the equations of motion in terms of two coupled telegraph-like equations for the material (Lagrangian) particles expressed in the Eulerian frame of reference, particularly suitable for numerical simulations, formulated for both the compressible media/incompressible fluid case and the doubly incompressible case. We derive interesting conservation laws for the motion, perform numerical simulations in both cases and show the possibility of self-propulsion of a biological organism due to particular running wave-like application of the muscle stress.
The importance of fluid-elastic forces in tube bundle vibrations can hardly be over-emphasized, in view of their damaging potential. In the last decades, advanced models for representing fluid-elastic coupling have therefore been developed by the com munity of the domain. Those models are nowadays embedded in the methodologies that are used on a regular basis by both steam generators providers and operators, in order to prevent the risk of a tube failure with adequate safety margins. From an R&D point of view however, the need still remains for more advanced models of fluid-elastic coupling, in order to fully decipher the physics underlying the observed phenomena. As a consequence, new experimental flow-coupling coefficients are also required to specifically feed and validate those more sophisticated models. Recent experiments performed at CEA-Saclay suggest that the fluid stiffness and damping coefficients depend on further dimensionless parameters beyond the reduced velocity. In this work, the problem of data reduction is first revisited, in the light of dimensional analysis. For single-phase flows, it is underlined that the flow-coupling coefficients depend at least on two dimensionless parameters, namely the Reynolds number $Re$ and the Stokes number $Sk$. Therefore, reducing the experimental data in terms of the compound dimensionless quantity $V_r=Re/Sk$ necessarily leads to impoverish results, hence the data dispersion. In a second step, experimental data are presented using the dimensionless numbers $Re$ and $Sk$. We report experiments, for a 3x5 square tube bundle subjected to water transverse flow. The bundle is rigid, except for the central tube which is mounted on a flexible suspension allowing for translation motions in the lift direction.
585 - Nicolas Leprovost 2007
A stochastic model is derived to predict the turbulent torque produced by a swirling flow. It is a simple Langevin process, with a colored noise. Using the unified colored noise approximation, we derive analytically the PDF of the fluctuations of inj ected power in two forcing regimes: constant angular velocity or constant applied torque. In the limit of small velocity fluctuations and vanishing inertia, we predict that the injected power fluctuates twice less in the case of constant torque than in the case of constant angular velocity forcing. The model is further tested against experimental data in a von Karman device filled with water. It is shown to allow for a parameter-free prediction of the PDF of power fluctuations in the case where the forcing is made at constant torque. A physical interpretation of our model is finally given, using a quasi-linear model of turbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا