ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Scale Mixing in a Violent Oxygen-Neon Shell Merger Prior to a Core-Collapse Supernova

81   0   0.0 ( 0 )
 نشر من قبل Naveen Yadav
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a seven-minute long $4pi$-3D simulation of a shell merger event in a non-rotating $18.88, M_odot$ supernova progenitor before the onset of gravitational collapse. The key motivation is to capture the large-scale mixing and asymmetries in the wake of the shell merger before collapse using a self-consistent approach. The $4pi$ geometry is crucial as it allows us to follow the growth and evolution of convective modes on the largest possible scales. We find significant differences between the kinematic, thermodynamic and chemical evolution of the 3D and the 1D model. The 3D model shows vigorous convection leading to more efficient mixing of nuclear species. In the 3D case the entire oxygen shell attains convective Mach numbers of $mathord{approx}, 0.1$, whereas in the 1D model, the convective velocities are much lower and there is negligible overshooting across convective boundaries. In the 3D case, the convective eddies entrain nuclear species from the neon (and carbon) layers into the deeper part of the oxygen burning shell, where they burn and power a violent convection phase with outflows. This is a prototypical model of a convective-reactive system. Due to the strong convection and the resulting efficient mixing, the interface between the neon layer and the silicon-enriched oxygen layer disappears during the evolution, and silicon is mixed far out into merged oxygen/neon shell. Neon entrained inwards by convective downdrafts burns, resulting in lower neon mass in the 3D model compared to the 1D model at time of collapse. In addition, the 3D model develops remarkable large-scale, large-amplitude asymmetries, which may have important implications for the impending gravitational collapse and the subsequent explosion.



قيم البحث

اقرأ أيضاً

A core-collapse supernova occurs when exothermic fusion ceases in the core of a massive star, typically due to exhaustion of nuclear fuel. Theory predicts that fusion could be interrupted earlier, by merging of the star with a compact binary companio n. We report a luminous radio transient, VT J121001+495647, found in the Very Large Array Sky Survey. The radio emission is consistent with supernova ejecta colliding with a dense shell of material, potentially ejected by binary interaction in the centuries prior to explosion. We associate the supernova with an archival X-ray transient, which implies a relativistic jet was launched during the explosion. The combination of an early relativistic jet and late-time dense interaction is consistent with expectations for a merger-driven explosion.
We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova havin g exploded in a cavity before encountering a massive shell of the progenitor stars stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Halpha absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30 - 300 Myr, and favor ages closer to 30 Myr in light of relatively strong Halpha emission. SN 2014C is the best-observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.
An important result in core-collapse supernova (CCSN) theory is that spherically-symmetric, one-dimensional simulations routinely fail to explode, yet multi-dimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multi-dimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure, and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multi-dimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Though we find that turbulent dissipation is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multi-dimensional simulations.
The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of how these catastrophic explosions proceed remain uncertain due, in part, to limited observational constraints on various processes that can introduce asymmetries deep inside the star. Here we present near-infrared observations of the young Milky Way supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior, unshocked ejecta. The remnants interior has a bubble-like morphology that smoothly connects to and helps explain the multi-ringed structures seen in the remnants bright reverse shocked main shell of expanding debris. This internal structure may have originated from turbulent mixing processes that encouraged the development of outwardly expanding plumes of radioactive 56Ni-rich ejecta. If this is true, substantial amounts of its decay product, 56Fe, may still reside in these interior cavities.
We present a comparison between several simulation codes designed to study the core-collapse supernova mechanism. We pay close attention to controlling the initial conditions and input physics in order to ensure a meaningful and informative compariso n. Our goal is three-fold. First, we aim to demonstrate the current level of agreement between various groups studying the core-collapse supernova central engine. Second, we desire to form a strong basis for future simulation codes and methods to compare to. Lastly, we want this work to be a stepping stone for future work exploring more complex simulations of core-collapse supernovae, i.e., simulations in multiple dimensions and simulations with modern neutrino and nuclear physics. We compare the early (first ~500ms after core bounce) spherically-symmetric evolution of a 20 solar mass progenitor star from six different core-collapse supernovae codes: 3DnSNe-IDSA, AGILE-BOLTZTRAN, FLASH, F{sc{ornax}}, GR1D, and PROMETHEUS-VERTEX. Given the diversity of neutrino transport and hydrodynamic methods employed, we find excellent agreement in many critical quantities, including the shock radius evolution and the amount of neutrino heating. Our results provide an excellent starting point from which to extend this comparison to higher dimensions and compare the development of hydrodynamic instabilities that are crucial to the supernova explosion mechanism, such as turbulence and convection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا