ﻻ يوجد ملخص باللغة العربية
We apply generalisations of the Swendson-Wang and Wolff cluster algorithms, which are based on the construction of Fortuin-Kasteleyn clusters, to the three-dimensional $pm 1$ random-bond Ising model. The behaviour of the model is determined by the temperature $T$ and the concentration $p$ of negative (anti-ferromagnetic) bonds. The ground state is ferromagnetic for $0 le p<p_c$, and a spin glass for $p_c < p le 0.5$ where $p_c simeq 0.222$. We investigate the percolation transition of the Fortuin-Kasteleyn clusters as function of temperature. Except for $p=0$ the Fortuin-Kasteleyn percolation transition occurs at a higher temperature than the magnetic ordering temperature. This was known before for $p=1/2$ but here we provide evidence for a difference in transition temperatures even for $p$ arbitrarily small. Furthermore, for all values of $p>0$, our data suggest that the percolation transition is universal, irrespective of whether the ground state exhibits ferromagnetic or spin-glass order, and is in the universality class of standard percolation. This shows that correlations in the bond occupancy of the Fortuin-Kasteleyn clusters are irrelevant, except for $p=0$ where the clusters are tied to Ising correlations so the percolation transition is in the Ising universality class.
We study ground-state properties of the two-dimensional random-bond Ising model with couplings having a concentration $pin[0,1]$ of antiferromagnetic and $(1-p)$ of ferromagnetic bonds. We apply an exact matching algorithm which enables us the study
We investigate the dependence of the critical Binder cumulant of the magnetization and the largest Fortuin-Kasteleyn cluster on the boundary conditions and aspect ratio of the underlying square Ising lattices. By means of the Swendsen-Wang algorithm,
The two-dimensional Potts model can be studied either in terms of the original Q-component spins, or in the geometrical reformulation via Fortuin-Kasteleyn (FK) clusters. While the FK representation makes sense for arbitrary real values of Q by const
Ising Monte Carlo simulations of the random-field Ising system Fe(0.80)Zn(0.20)F2 are presented for H=10T. The specific heat critical behavior is consistent with alpha approximately 0 and the staggered magnetization with beta approximately 0.25 +- 0.03.
We consider the two-dimensional randomly site diluted Ising model and the random-bond +-J Ising model (also called Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of therm