ﻻ يوجد ملخص باللغة العربية
We present neutron diffraction data for the cubic-heavy-fermion YbBiPt that show broad magnetic diffraction peaks due to the fragile short-range antiferromagnetic (AFM) order persist under an applied magnetic-field $mathbf{H}$. Our results for $mathbf{H}perp[bar{1}~1~0]$ and a temperature of $T=0.14(1)$ K show that the $(frac{1}{2},frac{1}{2},frac{3}{2})$ magnetic diffraction peak can be described by the same two-peak lineshape found for $mu_{0}H=0$ T below the N{e}el temperature of $T_{text{N}}=0.4$ K. Both components of the peak exist for $mu_{0}Hlesssim1.4 T$, which is well past the AFM phase boundary determined from our new resistivity data. Using neutron diffraction data taken at $T=0.13(2)$ K for $mathbf{H}parallel[0~0~1]$ or $[1~1~0]$, we show that domains of short-range AFM order change size throughout the previously determined AFM and non-Fermi liquid regions of the phase diagram, and that the appearance of a magnetic diffraction peak at $(frac{1}{2},frac{1}{2},frac{1}{2})$ at $mu_{0}Happrox0.4$ T signals canting of the ordered magnetic moment away from $[1~1~1]$. The continued broadness of the magnetic diffraction peaks under a magnetic field and their persistence across the AFM phase boundary established by detailed transport and thermodynamic experiments present an interesting quandary concerning the nature of YbBiPts electronic ground state.
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, $tau_{rm{AFM}}$ = ($frac{1}{2} frac{1}{2} frac{1}{2}$), and ordered moments that align
We report bulk magnetization, and elastic and inelastic neutron scattering measurements under an external magnetic field, $H$, on the weakly coupled distorted kagome system, Cu_{2}(OD)_3Cl. Our results show that the ordered state below 6.7 K is a can
Magnetoconductance (MC) in a parallel magnetic field B has been measured in a two-dimensional electron system in Si, in the regime where the conductivity decreases as sigma (n_s,T,B=0)=sigma (n_s,T=0) + A(n_s)T^2 (n_s -- carrier density) to a non-zer
A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength $J_{K}$ and a random Gaussian interlattice intera
We report on detailed ac calorimetry measurements under high pressure and magnetic field of CeRhIn5. Under hydrostatic pressure the antiferromagnetic order vanishes near p_c*=2 GPa due to a first order transition. Superconductivity is found for press