ﻻ يوجد ملخص باللغة العربية
Extracting the properties of a binary system emitting gravitational waves relies on models describing the last stages of the compact binary coalescence. In this article, we study potential biases inherent to current tidal waveform approximants for spinning and precessing systems. We perform a Bayesian study to estimate intrinsic parameters of highly spinning binary neutron star systems. Our analysis shows that one has to include the quadrupolar deformation of the neutron stars due to their rotation once dimensionless spins above $chi sim 0.20$ are reached, otherwise the extracted intrinsic parameters are systematically biased. We find that at design sensitivity of Advanced LIGO and Virgo, it seems unlikely that for GW170817-like sources a clear imprint of precession will be visible in the analysis of the signal employing current waveform models. However, precession effects might be detectable for unequal mass configurations with spins larger than $chi>0.2$. We finalize our study by investigating possible benefits of a combined gravitational wave and electromagnetic detection. The presence of electromagnetic counterparts help in reducing the dimensionality of the parameter space with constraints on the sky location, source distance, and inclination. However, we note that although a small improvement in the estimation of the tidal deformability parameter is seen in these cases, changes in the intrinsic parameters are overall very small.
Gravitational wave (GW) astronomy has consolidated its role as a new observational window to reveal the properties of compact binaries in the Universe. In particular, the discovery of the first binary neutron star coalescence, GW170817, led to a numb
Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced
Gravitational-wave observations of binary black holes allow new tests of general relativity to be performed on strong, dynamical gravitational fields. These tests require accurate waveform models of the gravitational-wave signal, otherwise waveform e
We construct new, multivariate empirical relations for measuring neutron star radii and tidal deformabilities from the dominant gravitational wave frequency in the post-merger phase of binary neutron star mergers. The relations determine neutron star
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars angu