ﻻ يوجد ملخص باللغة العربية
Gravitational wave (GW) astronomy has consolidated its role as a new observational window to reveal the properties of compact binaries in the Universe. In particular, the discovery of the first binary neutron star coalescence, GW170817, led to a number of scientific breakthroughs as the possibility to place constraints on the equation of state of cold matter at supranuclear densities. These constraints and all scientific results based on them require accurate models describing the GW signal to extract the source properties from the measured signal. In this article, we study potential systematic biases during the extraction of source parameters using different descriptions for both, the point-particle dynamics and tidal effects. We find that for the considered cases the mass and spin recovery show almost no systematic bias with respect to the chosen waveform model. However, the extracted tidal effects can be strongly biased, where we find generally that Post-Newtonian approximants predict neutron stars with larger deformability and radii than numerical relativity tuned models. Noteworthy, an increase in the Post-Newtonian order in the tidal phasing does not lead to a monotonic change in the estimated properties. We find that for a signal with strength similar to GW170817, but observed with design sensitivity, the estimated tidal parameters can differ by more than a factor of two depending on the employed tidal description of the waveform approximant. This shows the current need for the development of better waveform models to extract reliably the source properties from upcoming GW detections.
Extracting the properties of a binary system emitting gravitational waves relies on models describing the last stages of the compact binary coalescence. In this article, we study potential biases inherent to current tidal waveform approximants for sp
Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced
The combined observation of gravitational and electromagnetic waves from the coalescence of two neutron stars marks the beginning of multi-messenger astronomy with gravitational waves (GWs). The development of accurate gravitational waveform models i
Gravitational-wave observations of binary black holes allow new tests of general relativity to be performed on strong, dynamical gravitational fields. These tests require accurate waveform models of the gravitational-wave signal, otherwise waveform e
We construct new, multivariate empirical relations for measuring neutron star radii and tidal deformabilities from the dominant gravitational wave frequency in the post-merger phase of binary neutron star mergers. The relations determine neutron star