ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-induced atomic forces in gated graphene nanoconstrictions

103   0   0.0 ( 0 )
 نشر من قبل Susanne Leitherer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic current densities can reach extreme values in highly conducting nanostructures where constrictions limit current. For bias voltages on the 1 volt scale, the highly non-equilibrium situation can influence the electronic density between atoms, leading to significant inter-atomic forces. An easy interpretation of the non-equilibrium forces is currently not available. In this work, we present an ab-initio study based on density functional theory of bias-induced atomic forces in gated graphene nanoconstrictions consisting of junctions between graphene electrodes and graphene nano-ribbons in the presence of current. We find that current-induced bond-forces and bond-charges are correlated, while bond-forces are not simply correlated to bond-currents. We discuss, in particular, how the forces are related to induced charges and the electrostatic potential profile (voltage drop) across the junctions. For long current-carrying junctions we may separate the junction into a part with a voltage drop, and a part without voltage drop. The latter situation can be compared to a nano-ribbon in the presence of current using an ideal ballistic velocity-dependent occupation function. This shows how the combination of voltage drop and current give rise to the strongest current-induced forces in nanostructures.



قيم البحث

اقرأ أيضاً

We have developed the combination of an etching and deposition technique that enables the fabrication of locally gated graphene nanostructures of arbitrary design. Employing this method, we have fabricated graphene nanoconstrictions with local tunabl e transmission and characterized their electronic properties. An order of magnitude enhanced gate efficiency is achieved adopting the local gate geometry with thin dielectric gate oxide. A complete turn off of the device is demonstrated as a function of the local gate voltage. Such strong suppression of device conductance was found to be due to both quantum confinement and Coulomb blockade effects in the constricted graphene nanostructures.
We report first-principles calculations of current-induced forces in Si atomic wires as a function of bias and wire length. We find that these forces are strongly nonlinear as a function of bias due to the competition between the force originating fr om the scattering states and the force due to bound states. We also find that the average force in the wire is larger the shorter the wire, suggesting that atomic wires are more difficult to break under current flow with increasing length. The last finding is in agreement with recent experimental data.
In recent years, there has been an increasing interest in nanoelectromechanical devices, current-driven quantum machines, and the mechanical effects of electric currents on nanoscale conductors. Here, we carry out a thorough study of the current-indu ced forces and the electronic friction of systems whose electronic effective Hamiltonian can be described by an archetypal model, a single energy level coupled to two reservoirs. Our results can help better understand the general conditions that maximize the performance of different devices modeled as a quantum dot coupled to two electronic reservoirs. Additionally, they can be useful to rationalize the role of current-induced forces in the mechanical deformation of one-dimensional conductors.
We show that the electromagnetic forces generated by the excitations of a mode in graphene-based optomechanical systems are highly tunable by varying the graphene chemical potential, and orders of magnitude stronger than usual non-graphene-based devi ces, in both attractive and repulsive regimes. We analyze coupled waveguides made of two parallel graphene sheets, either suspended or supported by dielectric slabs, and study the interplay between the light-induced force and the Casimir-Lifshitz interaction. These findings pave the way to advanced possibilities of control and fast modulation for optomechanical devices and sensors at the nano- and micro-scales.
The influence of nanostructuring and quantum confinement on the thermoelectric properties of materials has been extensively studied. While this has made possible multiple breakthroughs in the achievable figure of merit, classical confinement, and its effect on the local Seebeck coefficient has mostly been neglected, as has the Peltier effect in general due to the complexity of measuring small temperature gradients locally. Here we report that reducing the width of a graphene channel to 100 nm changes the Seebeck coefficient by orders of magnitude. Using a scanning thermal microscope allows us to probe the local temperature of electrically contacted graphene two-terminal devices or to locally heat the sample. We show that constrictions in mono- and bilayer graphene facilitate a spatially correlated gradient in the Seebeck and Peltier coefficient, as evidenced by the pronounced thermovoltage $V_{th}$ and heating/cooling response $Delta T_{Peltier}$, respectively. This geometry dependent effect, which has not been reported previously in 2D materials, has important implications for measurements of patterned nanostructures in graphene and points to novel solutions for effective thermal management in electronic graphene devices or concepts for single material thermocouples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا