ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic transport in locally gated graphene nanoconstrictions

119   0   0.0 ( 0 )
 نشر من قبل Philip Kim
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed the combination of an etching and deposition technique that enables the fabrication of locally gated graphene nanostructures of arbitrary design. Employing this method, we have fabricated graphene nanoconstrictions with local tunable transmission and characterized their electronic properties. An order of magnitude enhanced gate efficiency is achieved adopting the local gate geometry with thin dielectric gate oxide. A complete turn off of the device is demonstrated as a function of the local gate voltage. Such strong suppression of device conductance was found to be due to both quantum confinement and Coulomb blockade effects in the constricted graphene nanostructures.



قيم البحث

اقرأ أيضاً

Electronic current densities can reach extreme values in highly conducting nanostructures where constrictions limit current. For bias voltages on the 1 volt scale, the highly non-equilibrium situation can influence the electronic density between atom s, leading to significant inter-atomic forces. An easy interpretation of the non-equilibrium forces is currently not available. In this work, we present an ab-initio study based on density functional theory of bias-induced atomic forces in gated graphene nanoconstrictions consisting of junctions between graphene electrodes and graphene nano-ribbons in the presence of current. We find that current-induced bond-forces and bond-charges are correlated, while bond-forces are not simply correlated to bond-currents. We discuss, in particular, how the forces are related to induced charges and the electrostatic potential profile (voltage drop) across the junctions. For long current-carrying junctions we may separate the junction into a part with a voltage drop, and a part without voltage drop. The latter situation can be compared to a nano-ribbon in the presence of current using an ideal ballistic velocity-dependent occupation function. This shows how the combination of voltage drop and current give rise to the strongest current-induced forces in nanostructures.
We study the quantization of Dirac fermions in lithographically defined graphene nanoconstrictions. We observe quantized conductance in single nanoconstrictions fabricated on top of a thin hexamethyldisilazane layer over a Si/SiO_2 wafer. This nanofa brication method allows us to obtain well defined edges in the nanoconstrictions, thus reducing the effects of edge roughness on the conductance. We prove the occurrence of ballistic transport and identify several size quantization plateaus in the conductance at low temperature. Experimental data and numerical simulations show good agreement, demonstrating that the smoothing of the plateaus is not related to edge roughness but to quantum interference effects.
We present measurements on side gated graphene constrictions of different geometries. We characterize the transport gap by its width in back gate voltage and compare this to an analysis based on Coulomb blockade measurements of localized states. We s tudy the effect of an applied side gate voltage on the transport gap and show that high side gate voltages lift the suppression of the conductance. Finally we study the effect of an applied magnetic field and demonstrate the presence of edge states in the constriction.
We present a fabrication process for high quality suspended and double gated trilayer graphene devices. The electrical transport measurements in these transistors reveal a high charge carrier mobility (higher than 20000 cm^2/Vs) and ballistic electri c transport on a scale larger than 200nm. We report a particularly large on/off ratio of the current in ABC-stacked trilayers, up to 250 for an average electric displacement of -0.08 V/nm, compatible with an electric field induced energy gap. The high quality of these devices is also demonstrated by the appearance of quantum Hall plateaus at magnetic fields as low as 500mT.
We investigate the effects of homogeneous and inhomogeneous deformations and edge disorder on the conductance of gated graphene nanoribbons. Under increasing homogeneous strain the conductance of such devices initially decreases before it acquires a resonance structure, and finally becomes completely suppressed at larger strain. Edge disorder induces mode mixing in the contact regions, which can restore the conductance to its ballistic value. The valley-antisymmetric pseudo-magnetic field induced by inhomogeneous deformations leads to the formation of additional resonance states, which either originate from the coupling into Fabry-Perot states that extend through the system, or from the formation of states that are localized near the contacts, where the pseudo-magnetic field is largest. In particular, the n=0 pseudo-Landau level manifests itself via two groups of conductance resonances close to the charge neutrality point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا