ﻻ يوجد ملخص باللغة العربية
We have developed the combination of an etching and deposition technique that enables the fabrication of locally gated graphene nanostructures of arbitrary design. Employing this method, we have fabricated graphene nanoconstrictions with local tunable transmission and characterized their electronic properties. An order of magnitude enhanced gate efficiency is achieved adopting the local gate geometry with thin dielectric gate oxide. A complete turn off of the device is demonstrated as a function of the local gate voltage. Such strong suppression of device conductance was found to be due to both quantum confinement and Coulomb blockade effects in the constricted graphene nanostructures.
Electronic current densities can reach extreme values in highly conducting nanostructures where constrictions limit current. For bias voltages on the 1 volt scale, the highly non-equilibrium situation can influence the electronic density between atom
We study the quantization of Dirac fermions in lithographically defined graphene nanoconstrictions. We observe quantized conductance in single nanoconstrictions fabricated on top of a thin hexamethyldisilazane layer over a Si/SiO_2 wafer. This nanofa
We present measurements on side gated graphene constrictions of different geometries. We characterize the transport gap by its width in back gate voltage and compare this to an analysis based on Coulomb blockade measurements of localized states. We s
We present a fabrication process for high quality suspended and double gated trilayer graphene devices. The electrical transport measurements in these transistors reveal a high charge carrier mobility (higher than 20000 cm^2/Vs) and ballistic electri
We investigate the effects of homogeneous and inhomogeneous deformations and edge disorder on the conductance of gated graphene nanoribbons. Under increasing homogeneous strain the conductance of such devices initially decreases before it acquires a