ﻻ يوجد ملخص باللغة العربية
The ALICE Collaboration aims at studying the physics of strongly interacting matter by building up a dedicated heavy-ion detector. The Inner Tracking System (ITS) is located in the heart of the ALICE Detector surrounding the interaction point. Now, ALICE has a plan to upgrade the inner tracking system for rare probes at low transverse momentum. The new ITS composes of seven layers of silicon pixel sensor on the supporting structure. One goal of the new design is to reduce the material budget ($X/X_0$) per layer to 0.3$%$ for inner layers and 0.8$%$ for middle and outer layers. In this work, we perform the calculations based on detailed geometry descriptions of different supporting structures for inner and outer barrel using ALIROOT. Our results show that it is possible to reduce the material budget of the inner and outer barrel to the value that we have expected. The manufacturing of such prototypes are also possible.
The Inner Tracking System (ITS) of the ALICE experiment will be upgraded during the second long LHC shutdown in $mathrm{2019}-mathrm{2020}$. The main goal of the ALICE ITS Upgrade is to enable high precision measurements of low - momentum particles (
The ATLAS detector at CERNs Large Hadron Collider (LHC) is equipped with a tracking system at its core (the Inner Detector, ID) consisting of silicon and gaseous straw tube detectors. The physics performance of the ID requires a precision alignment;
The Inner Tracking System (ITS) is the detector of the ALICE central barrel located closest to the beam axis and it is therefore a key detector for tracking and vertexing performance. Here, the main results from the ITS commissioning with atmospheric
The Compact Muon Solenoid experiment at the Large Hadron Collider at CERN includes a silicon pixel detector as its innermost component. Its main task is the precise reconstruction of charged particles close to the primary interaction vertex. This pap
This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.