ﻻ يوجد ملخص باللغة العربية
We calculate the entanglement entropy in spaces with horizons, such as Rindler or de Sitter space, using holography. We employ appropriate parametrizations of AdS space in order to obtain a Rindler or static de Sitter boundary metric. The holographic entanglement entropy for the regions enclosed by the horizons can be identified with the standard thermal entropy of these spaces. For this to hold, we define the effective Newtons constant appropriately and account for the way the AdS space is covered by the parametrizations.
The holographic representation of the entanglement entropy of four dimensional conformal field theories is studied. By generalizing the replica trick the anomalous terms in the entanglement entropy are evaluated. The same terms in the holographic rep
We investigate the application of our recent holographic entanglement negativity conjecture for higher dimensional conformal field theories to specific examples which serve as crucial consistency checks. In this context we compute the holographic ent
We show that the gravitational phase space for the near-horizon region of a bifurcate, axisymmetric Killing horizon in any dimension admits a 2D conformal symmetry algebra with central charges proportional to the area. This extends the construction o
Many discussions in the literature of spacetimes with more than one Killing horizon note that some horizons have positive and some have negative surface gravities, but assign to all a positive temperature. However, the first law of thermodynamics the
We would like to put the area law -- believed to by obeyed by entanglement entropies in the ground state of a local field theory -- to scrutiny in the presence of non-perturbative effects. We study instanton corrections to entanglement entropy in var