ﻻ يوجد ملخص باللغة العربية
Many discussions in the literature of spacetimes with more than one Killing horizon note that some horizons have positive and some have negative surface gravities, but assign to all a positive temperature. However, the first law of thermodynamics then takes a non-standard form. We show that if one regards the Christodoulou and Ruffini formula for the total energy or enthalpy as defining the Gibbs surface, then the rules of Gibbsian thermodynamics imply that negative temperatures arise inevitably on inner horizons, as does the conventional form of the first law. We provide many new examples of this phenomenon, including black holes in STU supergravity. We also give a discussion of left and right temperatures and entropies, and show that both the left and right temperatures are non-negative. The left-hand sector contributes exactly half the total energy of the system, and the right-hand sector contributes the other half. Both the sectors satisfy conventional first laws and Smarr formulae. For spacetimes with a positive cosmological constant, the cosmological horizon is naturally assigned a negative Gibbsian temperature. We also explore entropy-product formulae and a novel entropy-inversion formula, and we use them to test whether the entropy is a super-additive function of the extensive variables. We find that super-additivity is typically satisfied, but we find a counterexample for dyonic Kaluza-Klein black holes.
We show that the gravitational phase space for the near-horizon region of a bifurcate, axisymmetric Killing horizon in any dimension admits a 2D conformal symmetry algebra with central charges proportional to the area. This extends the construction o
The partial entanglement entropy (PEE) $s_{mathcal{A}}(mathcal{A}_i)$ characterizes how much the subset $mathcal{A}_i$ of $mathcal{A}$ contribute to the entanglement entropy $S_{mathcal{A}}$. We find one additional physical requirement for $s_{mathca
Vacuum Einstein equations when projected on to a black hole horizon is analogous to the dynamics of fluids. In this work we address the question, whether certain properties of semi-classical black holes could be holographically mapped into properties
In this paper, we will propose a universal relation between the holographic complexity (dual to a volume in AdS) and the holographic entanglement entropy (dual to an area in AdS). We will explicitly demonstrate that our conjuncture hold for all a met
We calculate the entanglement entropy in spaces with horizons, such as Rindler or de Sitter space, using holography. We employ appropriate parametrizations of AdS space in order to obtain a Rindler or static de Sitter boundary metric. The holographic