ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of Feature Space using Multi-Channel Attentional Sub-Networks

51   0   0.0 ( 0 )
 نشر من قبل Masanari Kimura
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional Neural Networks have achieved impressive results in various tasks, but interpreting the internal mechanism is a challenging problem. To tackle this problem, we exploit a multi-channel attention mechanism in feature space. Our network architecture allows us to obtain an attention mask for each feature while existing CNN visualization methods provide only a common attention mask for all features. We apply the proposed multi-channel attention mechanism to multi-attribute recognition task. We can obtain different attention mask for each feature and for each attribute. Those analyses give us deeper insight into the feature space of CNNs. The experimental results for the benchmark dataset show that the proposed method gives high interpretability to humans while accurately grasping the attributes of the data.



قيم البحث

اقرأ أيضاً

As machine learning becomes an important part of many real world applications affecting human lives, new requirements, besides high predictive accuracy, become important. One important requirement is transparency, which has been associated with model interpretability. Many machine learning algorithms induce models difficult to interpret, named black box. Moreover, people have difficulty to trust models that cannot be explained. In particular for machine learning, many groups are investigating new methods able to explain black box models. These methods usually look inside the black models to explain their inner work. By doing so, they allow the interpretation of the decision making process used by black box models. Among the recently proposed model interpretation methods, there is a group, named local estimators, which are designed to explain how the label of particular instance is predicted. For such, they induce interpretable models on the neighborhood of the instance to be explained. Local estimators have been successfully used to explain specific predictions. Although they provide some degree of model interpretability, it is still not clear what is the best way to implement and apply them. Open questions include: how to best define the neighborhood of an instance? How to control the trade-off between the accuracy of the interpretation method and its interpretability? How to make the obtained solution robust to small variations on the instance to be explained? To answer to these questions, we propose and investigate two strategies: (i) using data instance properties to provide improved explanations, and (ii) making sure that the neighborhood of an instance is properly defined by taking the geometry of the domain of the feature space into account. We evaluate these strategies in a regression task and present experimental results that show that they can improve local explanations.
Connectomics aims to recover a complete set of synaptic connections within a dataset imaged by volume electron microscopy. Many systems have been proposed for locating synapses, and recent research has included a way to identify the synaptic partners that communicate at a synaptic cleft. We re-frame the problem of identifying synaptic partners as directly generating the mask of the synaptic partners from a given cleft. We train a convolutional network to perform this task. The network takes the local image context and a binary mask representing a single cleft as input. It is trained to produce two binary output masks: one which labels the voxels of the presynaptic partner within the input image, and another similar labeling for the postsynaptic partner. The cleft mask acts as an attentional gating signal for the network. We find that an implementation of this approach performs well on a dataset of mouse somatosensory cortex, and evaluate it as part of a combined system to predict both clefts and connections.
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns. Recently, how to detect such forgery contents has become a hot research topic and many deepfake detection methods have been proposed. Most of them mo del deepfake detection as a vanilla binary classification problem, i.e, first use a backbone network to extract a global feature and then feed it into a binary classifier (real/fake). But since the difference between the real and fake images in this task is often subtle and local, we argue this vanilla solution is not optimal. In this paper, we instead formulate deepfake detection as a fine-grained classification problem and propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps. Moreover, to address the learning difficulty of this network, we further introduce a new regional independence loss and an attention guided data augmentation strategy. Through extensive experiments on different datasets, we demonstrate the superiority of our method over the vanilla binary classifier counterparts, and achieve state-of-the-art performance.
Coronary heart disease (CHD) is the leading cause of adult death in the United States and worldwide, and for which the coronary angiography procedure is the primary gateway for diagnosis and clinical management decisions. The standard-of-care for int erpretation of coronary angiograms depends upon ad-hoc visual assessment by the physician operator. However, ad-hoc visual interpretation of angiograms is poorly reproducible, highly variable and bias prone. Here we show for the first time that fully-automated angiogram interpretation to estimate coronary artery stenosis is possible using a sequence of deep neural network algorithms. The algorithmic pipeline we developed--called CathAI--achieves state-of-the art performance across the sequence of tasks required to accomplish automated interpretation of unselected, real-world angiograms. CathAI (Algorithms 1-2) demonstrated positive predictive value, sensitivity and F1 score of >=90% to identify the projection angle overall and >=93% for left or right coronary artery angiogram detection, the primary anatomic structures of interest. To predict obstructive coronary artery stenosis (>=70% stenosis), CathAI (Algorithm 4) exhibited an area under the receiver operating characteristic curve (AUC) of 0.862 (95% CI: 0.843-0.880). When externally validated in a healthcare system in another country, CathAI AUC was 0.869 (95% CI: 0.830-0.907) to predict obstructive coronary artery stenosis. Our results demonstrate that multiple purpose-built neural networks can function in sequence to accomplish the complex series of tasks required for automated analysis of real-world angiograms. Deployment of CathAI may serve to increase standardization and reproducibility in coronary stenosis assessment, while providing a robust foundation to accomplish future tasks for algorithmic angiographic interpretation.
Arbitrary style transfer aims to synthesize a content image with the style of an image to create a third image that has never been seen before. Recent arbitrary style transfer algorithms find it challenging to balance the content structure and the st yle patterns. Moreover, simultaneously maintaining the global and local style patterns is difficult due to the patch-based mechanism. In this paper, we introduce a novel style-attentional network (SANet) that efficiently and flexibly integrates the local style patterns according to the semantic spatial distribution of the content image. A new identity loss function and multi-level feature embeddings enable our SANet and decoder to preserve the content structure as much as possible while enriching the style patterns. Experimental results demonstrate that our algorithm synthesizes stylized images in real-time that are higher in quality than those produced by the state-of-the-art algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا