ترغب بنشر مسار تعليمي؟ اضغط هنا

Ramanujan Periodic Subspace Division Multiplexing (RPSDM)

329   0   0.0 ( 0 )
 نشر من قبل Srikanth Goli Mr
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a new modulation method defined as Ramanujan Periodic Subspace Division Multiplexing (RPSDM) is proposed using Ramanujan subspaces. Each subspace contains an integer valued Ramanujan Sum (RS) and its circular downshifts as a basis. The proposed RPSDM decomposes the linear time-invariant wireless channels into a Toeplitz stair block diagonal matrices, whereas Orthogonal Frequency Division Multiplexing (OFDM) decompose the same into diagonal. Advantages of such structured subspaces representation are studied and compared with an OFDM representation in terms of Peak-Average Power Ratio (PAPR) and Bit-Error-Rate (BER). Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) detectors are applied to evaluate the performance of OFDM and RPSDM techniques. Finally, the simulation results show that the proposed design (with an additional receiver complexity) outperforms OFDM under both detectors.



قيم البحث

اقرأ أيضاً

The ultimate performance of any wireless communication system is limited by electromagnetic principles and mechanisms. Motivated by this, we start from the first principles of wave propagation and consider a multiple-input multiple-output (MIMO) repr esentation of a communication system between two spatially-continuous volumes of arbitrary shape and position. This is the concept of holographic MIMO communications. The analysis takes into account the electromagnetic noise field, generated by external sources, and the constraint on the physical radiated power. The electromagnetic MIMO model is particularized for a system with parallel linear sources and receivers in line-of-sight conditions. Inspired by orthogonal-frequency division-multiplexing, we assume that the spatially-continuous transmit currents and received fields are represented using the Fourier basis functions. In doing so, a wavenumber-division multiplexing (WDM) scheme is obtained whose properties are studied with the conventional tools of linear systems theory. Particularly, the interplay among the different system parameters (e.g., transmission range, wavelength, and sizes of source and receiver) in terms of number of communication modes and level of interference is studied. Due to the non-finite support of the electromagnetic channel, we prove that the interference-free condition can only be achieved when the receiver size grows to infinity. The spectral efficiency of WDM is evaluated via the singular-value decomposition architecture with water-filling and compared to that of a simplified architecture, which uses linear processing at the receiver and suboptimal power allocation.
We propose a digital interference mitigation scheme to reduce the impact of mode coupling in space division multiplexing self-homodyne coherent detection and experimentally verify its effectiveness in 240-Gbps mode-multiplexed transmission over 3-mode multimode fiber.
259 - Xu Li , Jingjing Huang , Yibo Lyu 2020
The optical wireless communication (OWC) with the intensity modulation (IM), requires the modulated radio frequency (RF) signal to be real and non-negative. To satisfy the requirements, this paper proposes two types of mixed orthogonal frequency divi sion multiplexing (X-OFDM) waveform. The Hermitian symmetry (HS) character of the sub-carriers in the frequency domain, guarantees the signal in the time domain to be real, which reduces the spectral efficiency to $1/2$. For the odd sub-carriers in the frequency domain, the signal in the time domain after the inverse fast fourier transform (IFFT) is antisymmetric. For the even sub-carriers in the frequency domain, the signal in the time domain after the IFFT is symmetric. Based on the antisymmetric and symmetric characters, the two types of X-OFDM waveform are designed to guarantee the signal in the time domain to be non-negative, where the direct current (DC) bias is not needed. With $N$ sub-carriers in the frequency domain, the generated signal in the time domain has $3N/2$ points, which further reduces the spectral efficiency to $1/3 = 1/2 times 2/3$. The numerical simulations show that, the two types of X-OFDM waveform greatly enhance the power efficiency considering the OWC channel with the signal-dependent noise and/or the signal-independent noise.
182 - Hanzi Huang , Yetian Huang , Yu He 2020
We experimentally demonstrate a record net capacity per wavelength of 1.23~Tb/s over a single silicon-on-insulator (SOI) multimode waveguide for optical interconnects employing on-chip mode-division multiplexing and 11$times$11 multiple-in-multiple-out (MIMO) digital signal processing.
We demonstrate the code-division multiplexed (CDM) readout of eight transition-edge sensor microcalorimeters. The energy resolution is 3.0 eV (full width at half-maximum) or better at 5.9 keV, with a best resolution of 2.3 eV and a mean of 2.6 eV ove r the seven modulated detectors. The flux-summing CDM system is described and compared with similar time-division multiplexed (TDM) readout. We show that the sqrt(Npixels) multiplexing disadvantage associated with TDM is not present in CDM. This demonstration establishes CDM as both a simple route to higher performance in existing TDM microcalorimetric experiments and a long-term approach to reaching higher multiplexing factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا