ﻻ يوجد ملخص باللغة العربية
In this paper, a new modulation method defined as Ramanujan Periodic Subspace Division Multiplexing (RPSDM) is proposed using Ramanujan subspaces. Each subspace contains an integer valued Ramanujan Sum (RS) and its circular downshifts as a basis. The proposed RPSDM decomposes the linear time-invariant wireless channels into a Toeplitz stair block diagonal matrices, whereas Orthogonal Frequency Division Multiplexing (OFDM) decompose the same into diagonal. Advantages of such structured subspaces representation are studied and compared with an OFDM representation in terms of Peak-Average Power Ratio (PAPR) and Bit-Error-Rate (BER). Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) detectors are applied to evaluate the performance of OFDM and RPSDM techniques. Finally, the simulation results show that the proposed design (with an additional receiver complexity) outperforms OFDM under both detectors.
The ultimate performance of any wireless communication system is limited by electromagnetic principles and mechanisms. Motivated by this, we start from the first principles of wave propagation and consider a multiple-input multiple-output (MIMO) repr
We propose a digital interference mitigation scheme to reduce the impact of mode coupling in space division multiplexing self-homodyne coherent detection and experimentally verify its effectiveness in 240-Gbps mode-multiplexed transmission over 3-mode multimode fiber.
The optical wireless communication (OWC) with the intensity modulation (IM), requires the modulated radio frequency (RF) signal to be real and non-negative. To satisfy the requirements, this paper proposes two types of mixed orthogonal frequency divi
We experimentally demonstrate a record net capacity per wavelength of 1.23~Tb/s over a single silicon-on-insulator (SOI) multimode waveguide for optical interconnects employing on-chip mode-division multiplexing and 11$times$11 multiple-in-multiple-out (MIMO) digital signal processing.
We demonstrate the code-division multiplexed (CDM) readout of eight transition-edge sensor microcalorimeters. The energy resolution is 3.0 eV (full width at half-maximum) or better at 5.9 keV, with a best resolution of 2.3 eV and a mean of 2.6 eV ove