ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of Power Equipment Management Using Knowledge Graph

84   0   0.0 ( 0 )
 نشر من قبل Yachen Tang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate retrieval of the power equipment information plays an important role in guiding the full-lifecycle management of power system assets. Because of data duplication, database decentralization, weak data relations, and sluggish data updates, the power asset management system eager to adopt a new strategy to avoid the information losses, bias, and improve the data storage efficiency and extraction process. Knowledge graph has been widely developed in large part owing to its schema-less nature. It enables the knowledge graph to grow seamlessly and allows new relations addition and entities insertion when needed. This study proposes an approach for constructing power equipment knowledge graph by merging existing multi-source heterogeneous power equipment related data. A graph-search method to illustrate exhaustive results to the desired information based on the constructed knowledge graph is proposed. A case of a 500 kV station example is then demonstrated to show relevant search results and to explain that the knowledge graph can improve the efficiency of power equipment management.



قيم البحث

اقرأ أيضاً

Knowledge Graphs (KGs) extracted from text sources are often noisy and lead to poor performance in downstream application tasks such as KG-based question answering.While much of the recent activity is focused on addressing the sparsity of KGs by usin g embeddings for inferring new facts, the issue of cleaning up of noise in KGs through KG refinement task is not as actively studied. Most successful techniques for KG refinement make use of inference rules and reasoning over ontologies. Barring a few exceptions, embeddings do not make use of ontological information, and their performance in KG refinement task is not well understood. In this paper, we present a KG refinement framework called IterefinE which iteratively combines the two techniques - one which uses ontological information and inferences rules, PSL-KGI, and the KG embeddings such as ComplEx and ConvE which do not. As a result, IterefinE is able to exploit not only the ontological information to improve the quality of predictions, but also the power of KG embeddings which (implicitly) perform longer chains of reasoning. The IterefinE framework, operates in a co-training mode and results in explicit type-supervised embedding of the refined KG from PSL-KGI which we call as TypeE-X. Our experiments over a range of KG benchmarks show that the embeddings that we produce are able to reject noisy facts from KG and at the same time infer higher quality new facts resulting in up to 9% improvement of overall weighted F1 score
89 - Daniel Vollmers 2021
Knowledge Graph Question Answering (KGQA) systems are based on machine learning algorithms, requiring thousands of question-answer pairs as training examples or natural language processing pipelines that need module fine-tuning. In this paper, we pre sent a novel QA approach, dubbed TeBaQA. Our approach learns to answer questions based on graph isomorphisms from basic graph patterns of SPARQL queries. Learning basic graph patterns is efficient due to the small number of possible patterns. This novel paradigm reduces the amount of training data necessary to achieve state-of-the-art performance. TeBaQA also speeds up the domain adaption process by transforming the QA system development task into a much smaller and easier data compilation task. In our evaluation, TeBaQA achieves state-of-the-art performance on QALD-8 and delivers comparable results on QALD-9 and LC-QuAD v1. Additionally, we performed a fine-grained evaluation on complex queries that deal with aggregation and superlative questions as well as an ablation study, highlighting future research challenges.
Equipping machines with comprehensive knowledge of the worlds entities and their relationships has been a long-standing goal of AI. Over the last decade, large-scale knowledge bases, also known as knowledge graphs, have been automatically constructed from web contents and text sources, and have become a key asset for search engines. This machine knowledge can be harnessed to semantically interpret textual phrases in news, social media and web tables, and contributes to question answering, natural language processing and data analytics. This article surveys fundamental concepts and practical methods for creating and curating large knowledge bases. It covers models and methods for discovering and canonicalizing entities and their semantic types and organizing them into clean taxonomies. On top of this, the article discusses the automatic extraction of entity-centric properties. To support the long-term life-cycle and the quality assurance of machine knowledge, the article presents methods for constructing open schemas and for knowledge curation. Case studies on academic projects and industrial knowledge graphs complement the survey of concepts and methods.
The intelligent question answering (IQA) system can accurately capture users search intention by understanding the natural language questions, searching relevant content efficiently from a massive knowledge-base, and returning the answer directly to the user. Since the IQA system can save inestimable time and workforce in data search and reasoning, it has received more and more attention in data science and artificial intelligence. This article introduced a domain knowledge graph using the graph database and graph computing technologies from massive heterogeneous data in electric power. It then proposed an IQA system based on the electrical power knowledge graph to extract the intent and constraints of natural interrogation based on the natural language processing (NLP) method, to construct graph data query statements via knowledge reasoning, and to complete the accurate knowledge search and analysis to provide users with an intuitive visualization. This method thoroughly combined knowledge graph and graph computing characteristics, realized high-speed multi-hop knowledge correlation reasoning analysis in tremendous knowledge. The proposed work can also provide a basis for the context-aware intelligent question and answer.
Incorporating external knowledge to Visual Question Answering (VQA) has become a vital practical need. Existing methods mostly adopt pipeline approaches with different components for knowledge matching and extraction, feature learning, etc.However, s uch pipeline approaches suffer when some component does not perform well, which leads to error propagation and poor overall performance. Furthermore, the majority of existing approaches ignore the answer bias issue -- many answers may have never appeared during training (i.e., unseen answers) in real-word application. To bridge these gaps, in this paper, we propose a Zero-shot VQA algorithm using knowledge graphs and a mask-based learning mechanism for better incorporating external knowledge, and present new answer-based Zero-shot VQA splits for the F-VQA dataset. Experiments show that our method can achieve state-of-the-art performance in Zero-shot VQA with unseen answers, meanwhile dramatically augment existing end-to-end models on the normal F-VQA task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا