ﻻ يوجد ملخص باللغة العربية
In this work we investigate the possible condensation of tetraneutron resonant states in the lower density neutron rich gas regions inside Neutron Stars (NSs). Using a relativistic density functional approach we characterize the system containing different hadronic species including, besides tetraneutrons, nucleons and a set of light clusters ($^3$He, $alpha$ particles, deuterium and tritium). $sigma,omega$ and $rho$ mesonic fields provide the interaction in the nuclear system. We study how the tetraneutron presence could significantly impact the nucleon pairing fractions and the distribution of baryonic charge among species. For this we assume that they can be thermodynamically produced in an equilibrated medium and scan a range of coupling strengths to the mesonic fields from prescriptions based on isospin symmetry arguments. We find that tetraneutrons may appear over a range of densities belonging to the outer NS crust carrying a sizable amount of baryonic charge thus depleting the nucleon pairing fractions.
We study the equation of state (EOS) of kaon-condensed matter including the effects of temperature and trapped neutrinos. It is found that the order of the phase transition to a kaon-condensed phase, and whether or not Gibbs rules for phase equilibri
Both the incompressibility Ka of a finite nucleus of mass A and that ($K_{infty}$) of infinite nuclear matter are fundamentally important for many critical issues in nuclear physics and astrophysics. While some consensus has been reached about the $K
We review the long standing problem of superfluid pairing in pure neutron matter. For the $s$-wave pairing, we summarize the state of the art of many-body approaches including different $nn$ interactions, medium polarization, short-range correlations
We review the impact of nuclear forces on matter at neutron-rich extremes. Recent results have shown that neutron-rich nuclei become increasingly sensitive to three-nucleon forces, which are at the forefront of theoretical developments based on effec
The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet $P-$wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neu