ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a class of nonsmooth nonconvex optimization problems whose objective is the sum of a block relative smooth function and a proper and lower semicontinuous block separable function. Although the analysis of block proximal gradient (BPG) methods for the class of block $L$-smooth functions have been successfully extended to Bregman BPG methods that deal with the class of block relative smooth functions, accelerated Bregman BPG methods are scarce and challenging to design. Taking our inspiration from Nesterov-type acceleration and the majorization-minimization scheme, we propose a block alternating Bregman Majorization-Minimization framework with Extrapolation (BMME). We prove subsequential convergence of BMME to a first-order stationary point under mild assumptions, and study its global convergence under stronger conditions. We illustrate the effectiveness of BMME on the penalized orthogonal nonnegative matrix factorization problem.
In this paper, we consider an accelerated method for solving nonconvex and nonsmooth minimization problems. We propose a Bregman Proximal Gradient algorithm with extrapolation(BPGe). This algorithm extends and accelerates the Bregman Proximal Gradien
For some typical and widely used non-convex half-quadratic regularization models and the Ambrosio-Tortorelli approximate Mumford-Shah model, based on the Kurdyka-L ojasiewicz analysis and the recent nonconvex proximal algorithms, we developed an effi
We consider the problem of minimizing a block separable convex function (possibly nondifferentiable, and including constraints) plus Laplacian regularization, a problem that arises in applications including model fitting, regularizing stratified mode
Majorization-minimization algorithms consist of successively minimizing a sequence of upper bounds of the objective function. These upper bounds are tight at the current estimate, and each iteration monotonically drives the objective function downhil
Non-convex optimization is ubiquitous in machine learning. Majorization-Minimization (MM) is a powerful iterative procedure for optimizing non-convex functions that works by optimizing a sequence of bounds on the function. In MM, the bound at each it