ترغب بنشر مسار تعليمي؟ اضغط هنا

Block Alternating Bregman Majorization Minimization with Extrapolation

81   0   0.0 ( 0 )
 نشر من قبل Nicolas Gillis
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider a class of nonsmooth nonconvex optimization problems whose objective is the sum of a block relative smooth function and a proper and lower semicontinuous block separable function. Although the analysis of block proximal gradient (BPG) methods for the class of block $L$-smooth functions have been successfully extended to Bregman BPG methods that deal with the class of block relative smooth functions, accelerated Bregman BPG methods are scarce and challenging to design. Taking our inspiration from Nesterov-type acceleration and the majorization-minimization scheme, we propose a block alternating Bregman Majorization-Minimization framework with Extrapolation (BMME). We prove subsequential convergence of BMME to a first-order stationary point under mild assumptions, and study its global convergence under stronger conditions. We illustrate the effectiveness of BMME on the penalized orthogonal nonnegative matrix factorization problem.

قيم البحث

اقرأ أيضاً

In this paper, we consider an accelerated method for solving nonconvex and nonsmooth minimization problems. We propose a Bregman Proximal Gradient algorithm with extrapolation(BPGe). This algorithm extends and accelerates the Bregman Proximal Gradien t algorithm (BPG), which circumvents the restrictive global Lipschitz gradient continuity assumption needed in Proximal Gradient algorithms (PG). The BPGe algorithm has higher generality than the recently introduced Proximal Gradient algorithm with extrapolation(PGe), and besides, due to the extrapolation step, BPGe converges faster than BPG algorithm. Analyzing the convergence, we prove that any limit point of the sequence generated by BPGe is a stationary point of the problem by choosing parameters properly. Besides, assuming Kurdyka-{L}ojasiewicz property, we prove the whole sequences generated by BPGe converges to a stationary point. Finally, to illustrate the potential of the new method BPGe, we apply it to two important practical problems that arise in many fundamental applications (and that not satisfy global Lipschitz gradient continuity assumption): Poisson linear inverse problems and quadratic inverse problems. In the tests the accelerated BPGe algorithm shows faster convergence results, giving an interesting new algorithm.
For some typical and widely used non-convex half-quadratic regularization models and the Ambrosio-Tortorelli approximate Mumford-Shah model, based on the Kurdyka-L ojasiewicz analysis and the recent nonconvex proximal algorithms, we developed an effi cient preconditioned framework aiming at the linear subproblems that appeared in the nonlinear alternating minimization procedure. Solving large-scale linear subproblems is always important and challenging for lots of alternating minimization algorithms. By cooperating the efficient and classical preconditioned iterations into the nonlinear and nonconvex optimization, we prove that only one or any finite times preconditioned iterations are needed for the linear subproblems without controlling the error as the usual inexact solvers. The proposed preconditioned framework can provide great flexibility and efficiency for dealing with linear subproblems and guarantee the global convergence of the nonlinear alternating minimization method simultaneously.
We consider the problem of minimizing a block separable convex function (possibly nondifferentiable, and including constraints) plus Laplacian regularization, a problem that arises in applications including model fitting, regularizing stratified mode ls, and multi-period portfolio optimization. We develop a distributed majorization-minimization method for this general problem, and derive a complete, self-contained, general, and simple proof of convergence. Our method is able to scale to very large problems, and we illustrate our approach on two applications, demonstrating its scalability and accuracy.
88 - Julien Mairal 2014
Majorization-minimization algorithms consist of successively minimizing a sequence of upper bounds of the objective function. These upper bounds are tight at the current estimate, and each iteration monotonically drives the objective function downhil l. Such a simple principle is widely applicable and has been very popular in various scientific fields, especially in signal processing and statistics. In this paper, we propose an incremental majorization-minimization scheme for minimizing a large sum of continuous functions, a problem of utmost importance in machine learning. We present convergence guarantees for non-convex and convex optimization when the upper bounds approximate the objective up to a smooth error; we call such upper bounds first-order surrogate functions. More precisely, we study asymptotic stationary point guarantees for non-convex problems, and for convex ones, we provide convergence rates for the expected objective function value. We apply our scheme to composite optimization and obtain a new incremental proximal gradient algorithm with linear convergence rate for strongly convex functions. In our experiments, we show that our method is competitive with the state of the art for solving machine learning problems such as logistic regression when the number of training samples is large enough, and we demonstrate its usefulness for sparse estimation with non-convex penalties.
Non-convex optimization is ubiquitous in machine learning. Majorization-Minimization (MM) is a powerful iterative procedure for optimizing non-convex functions that works by optimizing a sequence of bounds on the function. In MM, the bound at each it eration is required to emph{touch} the objective function at the optimizer of the previous bound. We show that this touching constraint is unnecessary and overly restrictive. We generalize MM by relaxing this constraint, and propose a new optimization framework, named Generalized Majorization-Minimization (G-MM), that is more flexible. For instance, G-MM can incorporate application-specific biases into the optimization procedure without changing the objective function. We derive G-MM algorithms for several latent variable models and show empirically that they consistently outperform their MM counterparts in optimizing non-convex objectives. In particular, G-MM algorithms appear to be less sensitive to initialization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا