ﻻ يوجد ملخص باللغة العربية
Observations of the Kepler-1625 system with the Kepler and Hubble Space Telescopes have suggested the presence of a candidate exomoon, Kepler-1625b I, a Neptune-radius satellite orbiting a long-period Jovian planet. Here we present a new analysis of the Hubble observations, using an independent data reduction pipeline. We find that the transit light curve is well fit with a planet-only model, with a best-fit $chi^2_ u$ equal to 1.01. The addition of a moon does not significantly improve the fit quality. We compare our results directly with the original light curve from Teachey & Kipping (2018), and find that we obtain a better fit to the data using a model with fewer free parameters (no moon). We discuss possible sources for the discrepancy in our results, and conclude that the lunar transit signal found by Teachey & Kipping (2018) was likely an artifact of the data reduction. This finding highlights the need to develop independent pipelines to confirm results that push the limits of measurement precision.
Kepler and Hubble photometry of a total of four transits by the Jupiter-sized Kepler-1625b have recently been interpreted to show evidence of a Neptune-sized exomoon. The profound implications of this first possible exomoon detection and the physical
In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so fa
Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright star
We analyzed four Spitzer/IRAC observations at 3.6 and 4.5 {mu}m of the primary transit of the exoplanet GJ436b, by using blind source separation techniques. These observations are important to investigate the atmospheric composition of the planet GJ4
We present U, V, and I-band images of the host galaxy of Hercules A (3C 348) obtained with HST/WFC3/UVIS. We find a network of dusty filaments which are more complex and extended than seen in earlier HST observations. The filaments are associated wit