ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope search for the transit of the Earth-mass exoplanet Alpha Centauri Bb

119   0   0.0 ( 0 )
 نشر من قبل Brice-Olivier Demory
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterisation of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet Alpha Centauri Bb with the Hubble Space Telescope (HST). We observed Alpha Centauri B twice in 2013 and 2014 for a total of 40 hours. We achieve a precision of 115 ppm per 6-s exposure time in a highly-saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of Alpha Centauri Bb with the orbital parameters published in the literature at 96.6% confidence. We find in our data a single transit-like event that could be associated to another Earth-size planet in the system, on a longer period orbit. Our program demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26 hours of continuous observations.

قيم البحث

اقرأ أيضاً

Proxima Centauri is known as the closest star from the Sun. Recently, radial velocity observations revealed the existence of an Earth-mass planet around it. With an orbital period of ~11 days, the surface of Proxima Centauri b is temperate and might be habitable. We took a photometric monitoring campaign to search for its transit, using the Bright Star Survey Telescope at the Zhongshan Station in Antarctica. A transit-like signal appearing on 2016 September 8th, is identified tentatively. Its midtime, $T_{C}=2,457,640.1990pm0.0017$ HJD, is consistent with the predicted ephemeris based on RV orbit in a 1$sigma$ confidence interval. Time-correlated noise is pronounced in the light curve of Proxima Centauri, affecting detection of transits. We develop a technique, in a Gaussian process framework, to gauge the statistical significance of potential transit detection. The tentative transit signal reported here, has a confidence level of $2.5sigma$. Further detection of its periodic signals is necessary to confirm the planetary transit of Proxima Centauri b. We plan to monitor Proxima Centauri in next Polar night at Dome A in Antarctica, taking the advantage of continuous darkness. citet{Kipping17} reported two tentative transit-like signals of Proxima Centauri b, observed by the Microvariability and Oscillation of Stars space Telescope in 2014 and 2015, respectively. The midtransit time of our detection is 138 minutes later than that predicted by their transit ephemeris. If all the signals are real transits, the misalignment of the epochs plausibly suggests transit timing variations of Proxima Centauri b induced by an outer planet in this system.
The detection of small planets orbiting nearby stars is an important step towards the identification of Earth twins. In previous work using the Spitzer Space Telescope, we found evidence to support at least one sub-Earth-sized exoplanet orbiting the nearby mid-M dwarf star GJ 436. As a follow up, here we used the Hubble Space Telescope to investigate the existence of one of these candidate planets, UCF-1.01, by searching for two transit signals as it passed in front of its host star. Interpretation of the data hinges critically on correctly modeling and removing the WFC3 instrument systematics from the light curves. Building on previous HST work, we demonstrate that WFC3 analyses need to explore the use of a quadratic function to fit a visit-long time-dependent systematic. This is important for establishing absolute transit and eclipse depths in the white light curves of all transiting systems. The work presented here exemplifies this point by putatively detecting the primary transit of UCF-1.01 with the use of a linear trend. However, using a quadratic trend, we achieve a better fit to the white light curves and a reduced transit depth that is inconsistent with previous Spitzer measurements. Furthermore, quadratic trends with or without a transit model component produce comparable fits to the available data. Using extant WFC3 transit light curves for GJ436b, we further validate the quadratic model component by achieving photon-limited model fit residuals and consistent transit depths over multiple epochs. We conclude that, when we fit for a quadratic trend, our new data contradict the prediction of a sub-Earth-sized planet orbiting GJ 436 with the size, period, and ephemeris posited from the Spitzer data by a margin of 3.1{sigma}.
The holy grail in planet hunting is the detection of an Earth-analog: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analog around one of the stars in the immediate solar neighborhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the alpha Centauri system using the Hercules spectrograph at the 1-m McLellan telescope at Mt John University Observatory (MJUO) in New Zealand. The goal of our project is to obtain such a large number of radial velocity measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past years, we have collected more than 45,000 spectra for both stars combined. These data are currently processed by an advanced version of our radial velocity reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules program for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in an 3.24-d orbit announced by Dumusque et al.~(2012).
71 - Artie P. Hatzes 2013
We present an analysis of the publicly available HARPS radial velocity (RV) measurements for Alpha Cen B, a star hosting an Earth-mass planet candidate in a 3.24 day orbit. The goal is to devise robust ways of extracting low-amplitude RV signals of l ow mass planets in the presence of activity noise. Two approaches were used to remove the stellar activity signal which dominates the RV variations: 1) Fourier component analysis (pre-whitening), and 2) local trend filtering (LTF) of the activity using short time windows of the data. The Fourier procedure results in a signal at P = 3.236 days and K = 0.42 m/s which is consistent with the presence of an Earth-mass planet, but the false alarm probability for this signal is rather high at a few percent. The LTF results in no significant detection of the planet signal, although it is possible to detect a marginal planet signal with this method using a different choice of time windows and fitting functions. However, even in this case the significance of the 3.24-d signal depends on the details of how a time window containing only 10% of the data is filtered. Both methods should have detected the presence of Alpha Cen Bb at a higher significance than is actually seen. We also investigated the influence of random noise with a standard deviation comparable to the HARPS data and sampled in the same way. The distribution of the noise peaks in the period range 2.8 - 3.3 days have a maximum of approximately 3.2 days and amplitudes approximately one-half of the K-amplitude for the planet. The presence of the activity signal may boost the velocity amplitude of these signals to values comparable to the planet. It may be premature to attribute the 3.24 day RV variations to an Earth-mass planet. A better understanding of the noise characteristics in the RV data as well as more measurements with better sampling will be needed to confirm this exoplanet.
Recent results from the Kepler mission indicate that super-Earths (planets with masses between 1-10 times that of the Earth) are the most common kind of planet around nearby Sun-like stars. These planets have no direct solar system analogue, and are currently one of the least well-understood classes of extrasolar planets. Many super-Earths have average densities that are consistent with a broad range of bulk compositions, including both water-dominated worlds and rocky planets covered by a thick hydrogen and helium atmosphere. Measurements of the transmission spectra of these planets offer the opportunity to resolve this degeneracy by directly constraining the scale heights and corresponding mean molecular weights of their atmospheres. We present Hubble Space Telescope near-infrared spectroscopy of two transits of the newly discovered transiting super-Earth HD 97658b. We use the Wide Field Camera 3s scanning mode to measure the wavelength-dependent transit depth in thirty individual bandpasses. Our averaged differential transmission spectrum has a median 1 sigma uncertainty of 23 ppm in individual bins, making this the most precise observation of an exoplanetary transmission spectrum obtained with WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity atmosphere at the 10 sigma level. They are consistent at the 0.4 sigma level with a flat line model, as well as effectively flat models corresponding to a metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze layer located at pressures of 10 mbar or higher.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا