ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a machine-learning assisted modeling framework in design-technology co-optimization (DTCO) flow. Neural network (NN) based surrogate model is used as an alternative of compact model of new devices without prior knowledge of device physics to predict device and circuit electrical characteristics. This modeling framework is demonstrated and verified in FinFET with high predicted accuracy in device and circuit level. Details about the data handling and prediction results are discussed. Moreover, same framework is applied to new mechanism device tunnel FET (TFET) to predict device and circuit characteristics. This work provides new modeling method for DTCO flow.
With the emergence of new photonic and plasmonic materials with optimized properties as well as advanced nanofabrication techniques, nanophotonic devices are now capable of providing solutions to global challenges in energy conversion, information te
Over the past decade, artificially engineered optical materials and nanostructured thin films have revolutionized the area of photonics by employing novel concepts of metamaterials and metasurfaces where spatially varying structures yield tailorable,
Designing and implementing efficient, provably correct parallel machine learning (ML) algorithms is challenging. Existing high-level parallel abstractions like MapReduce are insufficiently expressive while low-level tools like MPI and Pthreads leave
Designing and implementing efficient, provably correct parallel machine learning (ML) algorithms is challenging. Existing high-level parallel abstractions like MapReduce are insufficiently expressive while low-level tools like MPI and Pthreads leave
Quantum annealing devices such as the ones produced by D-Wave systems are typically used for solving optimization and sampling tasks, and in both academia and industry the characterization of their usefulness is subject to active research. Any proble