ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic study of proton radioactivity based on Gamow--like model with a screened electrostatic barrier

59   0   0.0 ( 0 )
 نشر من قبل Xiao-Hua Li
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work we systematically study the half--lives of proton radioactivity for $51 leq Z leq 83$ nuclei based on the Gamow--like model with a screened electrostatic barrier. In this model there are two parameters while considering the screened electrostatic effect of Coulomb potential with the Hulthen potential i.e. the effective nuclear radius parameter r_0 and the screening parameter a. The calculated results can well reproduce the experimental data. In addition, we extend this model to predict the proton radioactivity half--lives of 16 nuclei in the same region within a factor of 2.94, whose proton radioactivity are energetically allowed or observed but not yet quantified. Meanwhile, studying on the proton radioactivity half-life by a type of universal decay law has been done. The results indicate that the calculated half--lives are linearly dependent on Coulomb parameter with the same orbital angular momentum.



قيم البحث

اقرأ أيضاً

114 - Y. T. Zou , X. Pan , X. H. Li 2021
In this study, a phenomenological model is proposed based on Wentzel-Kramers-Brillouin (WKB) theory and applied to investigate the two-proton ($2p$) radioactive half-lives of nuclei near or beyond the proton drip line. The total diproton-daughter nuc leus interaction potential is composed of the Hulthen-type electrostatic term and the centrifugal term. The calculated $2p$ radioactive half-lives can accurately reproduce the existing 10 experimental datasets of five true $2p$ radioactive nuclei with $sigma$ = 0.736. In addition, we extend this model to predict the half-lives of possible $2p$ radioactive nuclei whose $2p$ radioactivity is energetically allowed or observed but not yet quantified in NUBASE2016. The predicted results are in agreement with those obtained using the Gamow-like model, generalized liquid drop model, Sreeja formula, and Liu formula.
A large number of complete fusion excitation functions of reactions including the breakup channel were measured in recent decades, especially in the last few years. It allows us to investigate the systematic behavior of the breakup effects on the com plete fusion cross sections. To this end, we perform a systematic study of the breakup effects on the complete fusion cross sections at energies above the Coulomb barrier. The reduced fusion functions F(x) are compared with the universal fusion functions which are used as a uniform standard reference. The complete fusion cross sections at energies above the Coulomb barrier are suppressed by the breakup of projectiles. This suppression effect for reactions induced by the same projectile is independent of the target and mainly determined by the lowest energy breakup channel of the projectile. There holds a good exponential relation between the suppression factor and the energy corresponding to the lowest breakup threshold.
Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A $=$ 18-34. We predict $^{19}$Mg, $^{22}$Si, $^{26}$S, $^{30}$Ar and $^{34}$Ca as promising candidates of ground state 2p-radioactivity with S$_{2p}$ $<$ 0 and S$_{ p}$ $>$ 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound $^{22}$Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.
In this work, we systematically study the two-proton($2p$) radioactivity half-lives using the two-potential approach while the nuclear potential is obtained by using Skyrme-Hartree-Fock approach with the Skyrme effective interaction of {SLy8}. For tr ue $2p$ radioactivity($Q_{2p}$ $>$ 0 and $Q_p$ $< $0, where the $Q_p$ and $Q_{2p}$ are the released energy of the one-proton and two-proton radioactivity), the standard deviation between the experimental half-lives and our theoretical calculations is {0.701}. In addition, we extend this model to predict the half-lives of 15 possible $2p$ radioactivity candidates with $Q_{2p}$ $>$ 0 taken from the evaluated atomic mass table AME2016. The calculated results indicate that a clear linear relationship between the logarithmic $2p$ radioactivity half-lives $rm{log}_{10}T_{1/2}$ and coulomb parameters [ ($Z_{d}^{0.8}$+$l^{0.25}$)$Q_{2p}^{-1/2}$] considered the effect of orbital angular momentum proposed by Liu $et$ $al$ [Chin. Phys. C textbf{45}, 024108 (2021)] is also existed. For comparison, the generalized liquid drop model(GLDM), the effective liquid drop model(ELDM) and Gamow-like model are also used. Our predicted results are consistent with the ones obtained by the other models.
105 - B. S. Hu , Q. Wu , J. G. Li 2020
Gamow shell model (GSM) is usually performed within the Woods-Saxon (WS) basis in which the WS parameters need to be determined by fitting experimental single-particle energies including their resonance widths. In the multi-shell case, such a fit is difficult due to the lack of experimental data of cross-shell single-particle energies and widths. In this paper, we develop an {it ab-initio} GSM by introducing the Gamow Hartree-Fock (GHF) basis that is obtained using the same interaction as the one used in the construction of the shell-model Hamiltonian. GSM makes use of the complex-momentum Berggren representation, then including resonance and continuum components. Hence, GSM gives a good description of weakly bound and unbound nuclei. Starting from chiral effective field theory and employing many-body perturbation theory (MBPT) (called nondegenerate $hat Q$-box folded-diagram renormalization) in the GHF basis, a multi-shell Hamiltonian ({it sd-pf} shells in this work) can be constructed. The single-particle energies and their resonance widths can also been obtained using MBPT. We investigated $^{23-28}$O and $^{23-31}$F isotopes, for which multi-shell calculations are necessary. Calculations show that continuum effects and the inclusion of the {it pf} shell are important elements to understand the structure of nuclei close to and beyond driplines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا