ﻻ يوجد ملخص باللغة العربية
We report the discovery of SMSS J160540.18-144323.1, a new ultra-metal poor halo star discovered with the SkyMapper telescope. We measure [Fe/H] = -6.2 +- 0.2 (1D LTE), the lowest ever detected abundance of iron in a star. The star is strongly carbon-enhanced, [C/Fe] = 3.9 +- 0.2, while other abundances are compatible with an alpha-enhanced solar-like pattern with [Ca/Fe] = 0.4 +- 0.2, [Mg/Fe] = 0.6 +- 0.2, [Ti/Fe] = 0.8 +- 0.2, and no significant s- or r-process enrichment, [Sr/Fe] < 0.2 and [Ba/Fe] < 1.0 (3{sigma} limits). Population III stars exploding as fallback supernovae may explain both the strong carbon enhancement and the apparent lack of enhancement of odd-Z and neutron-capture element abundances. Grids of supernova models computed for metal-free progenitor stars yield good matches for stars of about 10 solar mass imparting a low kinetic energy on the supernova ejecta, while models for stars more massive than roughly 20 solar mass are incompatible with the observed abundance pattern.
A high-resolution spectroscopic analysis is presented for a new highly r-process-enhanced ([Eu/Fe] = 1.27, [Ba/Eu] = -0.65), very metal-poor ([Fe/H] = -2.09), retrograde halo star, RAVE J153830.9-180424, discovered as part of the R-Process Alliance s
We use 156 044 white dwarf candidates with $geq5sigma$ significant parallax measurements from the Gaia mission to measure the velocity dispersion of the Galactic disc; $(sigma_U,sigma_V,sigma_W) = (30.8, 23.9, 20.0)$ km s$^{-1}$. We identify 142 obje
Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. Recent observations of the r-process-enriched star BD +17 3248 include new abundance determinations for
Hierarchical structure formation implies that the number of subhalos within a dark matter halo depends not only on halo mass, but also on the formation history of the halo. This dependence on the formation history, which is highly correlated with hal
We explore the structure of the element abundance--age--orbit distribution of the stars in the Milky Ways low-$alpha$ disk, by (re-)deriving precise [Fe/H], [X/Fe] and ages, along with orbits, for red clump stars from the APOGEE survey. There has bee