ﻻ يوجد ملخص باللغة العربية
We explore the structure of the element abundance--age--orbit distribution of the stars in the Milky Ways low-$alpha$ disk, by (re-)deriving precise [Fe/H], [X/Fe] and ages, along with orbits, for red clump stars from the APOGEE survey. There has been a long-standing theoretical expectation and observational evidence that metallicity ([Fe/H]) and age are informative about a stars orbit, e.g. about its angular momentum and the corresponding mean Galactocentric distance or its vertical motion. Indeed, our analysis of the APOGEE data confirms that [Fe/H] or age alone can predict the stars orbits far less well than the combination of the two. Remarkably, we find and show explicitly, that for known [Fe/H] and age, the other abundances [X/Fe] of Galactic disk stars can be predicted well (on average to 0.02 dex) across a wide range of Galactocentric radii, and therefore provide little additional information, e.g. for predicting their orbit. While the age-abundance space for metal poor stars and potentially for stars near the Galactic center is rich or complex, for the bulk of the Galaxys low-$alpha$ disk it is simple: [Fe/H] and age contain most information, unless [X/Fe] can be measured to 0.02, or better. Consequently, we do not have the precision with current (and likely near-future) data to assign stars to their individual (coeval) birth clusters, from which the disk is presumably formed. We can, however, place strong constraints on future models of galactic evolution, chemical enrichment and mixing.
We examine the distribution of the [O/Fe] abundance ratio in stars across the Galactic disk using H-band spectra from the Apache Point Galactic Evolution Experiment (APOGEE). We minimize systematic errors by considering groups of stars with similar a
[ABRIDGED] The purpose of this work is to evaluate how several elements produced by different nucleosynthesis processes behave with stellar age and provide empirical relations to derive stellar ages from chemical abundances. We derive different sets
The orbital properties of stars in the disk are signatures of their formation, but they are also expected to change over time due to the dynamical evolution of the Galaxy. Stellar orbits can be quantified by three dynamical actions, J_r, L_z, and J_z
The vast majority of Milky Way stellar halo stars were likely accreted from a small number ($lesssim$3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained, relying predominantly on indirect dy
We present the analysis of 34 light curves in $V$ and $I$ of 17 giant stars in the globular cluster NGC 3201, to check if such stars are variable and if their variability has some kind of impact on the iron abundance as obtained from spectroscopic me