ﻻ يوجد ملخص باللغة العربية
In this paper, we study the problem of computing a minimum-width axis-aligned cubic shell that encloses a given set of $n$ points in a three-dimensional space. A cubic shell is a closed volume between two concentric and face-parallel cubes. Prior to this work, there was no known algorithm for this problem in the literature. We present the first nontrivial algorithm whose running time is $O(n log^2 n)$. Our approach easily extends to higher dimension, resulting in an $O(n^{lfloor d/2 rfloor} log^{d-1} n)$-time algorithm for the hypercubic shell problem in $dgeq 3$ dimension.
In this paper, we study the problem of computing a minimum-width double-strip or parallelogram annulus that encloses a given set of $n$ points in the plane. A double-strip is a closed region in the plane whose boundary consists of four parallel lines
We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for
In a geometric network G = (S, E), the graph distance between two vertices u, v in S is the length of the shortest path in G connecting u to v. The dilation of G is the maximum factor by which the graph distance of a pair of vertices differs from the
We present time-space trade-offs for computing the Euclidean minimum spanning tree of a set $S$ of $n$ point-sites in the plane. More precisely, we assume that $S$ resides in a random-access memory that can only be read. The edges of the Euclidean mi
We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that generates the $1$-dimensional homology classes with $mathbb{Z}_2$ coefficients in a given simplicial complex $K$. This problem has been extensively studi