ﻻ يوجد ملخص باللغة العربية
In this paper, we study the problem of computing a minimum-width double-strip or parallelogram annulus that encloses a given set of $n$ points in the plane. A double-strip is a closed region in the plane whose boundary consists of four parallel lines and a parallelogram annulus is a closed region between two edge-parallel parallelograms. We present several first algorithms for these problems. Among them are $O(n^2)$ and $O(n^3 log n)$-time algorithms that compute a minimum-width double-strip and parallelogram annulus, respectively, when their orientations can be freely chosen.
In this paper, we address the minimum-area rectangular and square annulus problem, which asks a rectangular or square annulus of minimum area, either in a fixed orientation or over all orientations, that encloses a set $P$ of $n$ input points in the
In this paper, we study the problem of computing a minimum-width axis-aligned cubic shell that encloses a given set of $n$ points in a three-dimensional space. A cubic shell is a closed volume between two concentric and face-parallel cubes. Prior to
In this paper, we study different variations of minimum width color-spanning annulus problem among a set of points $P={p_1,p_2,ldots,p_n}$ in $I!!R^2$, where each point is assigned with a color in ${1, 2, ldots, k}$. We present algorithms for finding
We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that generates the $1$-dimensional homology classes with $mathbb{Z}_2$ coefficients in a given simplicial complex $K$. This problem has been extensively studi
We consider a spectrum of geometric optimization problems motivated by contexts such as satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs, we are given a graph $G$ that is embedded in Euclidean space. The