ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimum-Width Double-Strip and Parallelogram Annulus

48   0   0.0 ( 0 )
 نشر من قبل Sang Won Bae
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sang Won Bae




اسأل ChatGPT حول البحث

In this paper, we study the problem of computing a minimum-width double-strip or parallelogram annulus that encloses a given set of $n$ points in the plane. A double-strip is a closed region in the plane whose boundary consists of four parallel lines and a parallelogram annulus is a closed region between two edge-parallel parallelograms. We present several first algorithms for these problems. Among them are $O(n^2)$ and $O(n^3 log n)$-time algorithms that compute a minimum-width double-strip and parallelogram annulus, respectively, when their orientations can be freely chosen.



قيم البحث

اقرأ أيضاً

56 - Sang Won Bae 2019
In this paper, we address the minimum-area rectangular and square annulus problem, which asks a rectangular or square annulus of minimum area, either in a fixed orientation or over all orientations, that encloses a set $P$ of $n$ input points in the plane. To our best knowledge, no nontrivial results on the problem have been discussed in the literature, while its minimum-width variants have been intensively studied. For a fixed orientation, we show reductions to well-studied problems: the minimum-width square annulus problem and the largest empty rectangle problem, yielding algorithms of time complexity $O(nlog^2 n)$ and $O(nlog n)$ for the rectangular and square cases, respectively. In arbitrary orientation, we present $O(n^3)$-time algorithms for the rectangular and square annulus problem by enumerating all maximal empty rectangles over all orientations. The same approach is shown to apply also to the minimum-width square annulus problem and the largest empty square problem over all orientations, resulting in $O(n^3)$-time algorithms for both problems. Consequently, we improve the previously best algorithm for the minimum-width square annulus problem by a factor of logarithm, and present the first algorithm for the largest empty square problem in arbitrary orientation. We also consider bicriteria optimization variants, computing a minimum-width minimum-area or minimum-area minimum-width annulus.
38 - Sang Won Bae 2019
In this paper, we study the problem of computing a minimum-width axis-aligned cubic shell that encloses a given set of $n$ points in a three-dimensional space. A cubic shell is a closed volume between two concentric and face-parallel cubes. Prior to this work, there was no known algorithm for this problem in the literature. We present the first nontrivial algorithm whose running time is $O(n log^2 n)$. Our approach easily extends to higher dimension, resulting in an $O(n^{lfloor d/2 rfloor} log^{d-1} n)$-time algorithm for the hypercubic shell problem in $dgeq 3$ dimension.
In this paper, we study different variations of minimum width color-spanning annulus problem among a set of points $P={p_1,p_2,ldots,p_n}$ in $I!!R^2$, where each point is assigned with a color in ${1, 2, ldots, k}$. We present algorithms for finding a minimum width color-spanning axis parallel square annulus $(CSSA)$, minimum width color spanning axis parallel rectangular annulus $(CSRA)$, and minimum width color-spanning equilateral triangular annulus of fixed orientation $(CSETA)$. The time complexities of computing (i) a $CSSA$ is $O(n^3+n^2klog k)$ which is an improvement by a factor $n$ over the existing result on this problem, (ii) that for a $CSRA$ is $O(n^4log n)$, and for (iii) a $CSETA$ is $O(n^3k)$. The space complexity of all the algorithms is $O(k)$.
96 - Abhishek Rathod 2021
We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that generates the $1$-dimensional homology classes with $mathbb{Z}_2$ coefficients in a given simplicial complex $K$. This problem has been extensively studi ed in the last few years. For general complexes, the current best deterministic algorithm, by Dey et al., runs in $O(N^omega + N^2 g)$ time, where $N$ denotes the number of simplices in $K$, $g$ denotes the rank of the $1$-homology group of $K$, and $omega$ denotes the exponent of matrix multiplication. In this paper, we present two conceptually simple randomized algorithms that compute a minimum homology basis of a general simplicial complex $K$. The first algorithm runs in $tilde{O}(m^omega)$ time, where $m$ denotes the number of edges in $K$, whereas the second algorithm runs in $O(m^omega + N m^{omega-1})$ time. We also study the problem of finding a minimum cycle basis in an undirected graph $G$ with $n$ vertices and $m$ edges. The best known algorithm for this problem runs in $O(m^omega)$ time. Our algorithm, which has a simpler high-level description, but is slightly more expensive, runs in $tilde{O}(m^omega)$ time.
We consider a spectrum of geometric optimization problems motivated by contexts such as satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs, we are given a graph $G$ that is embedded in Euclidean space. The edges of $G$ need to be scanned, i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each other; changing the heading of a vertex incurs some cost in terms of energy or rotation time that is proportional to the corresponding rotation angle. Our goal is to compute schedules that minimize the following objective functions: (i) in Minimum Makespan Scan Cover (MSC-MS), this is the time until all edges are scanned; (ii) in Minimum Total Energy Scan Cover (MSC-TE), the sum of all rotation angles; (iii) in Minimum Bottleneck Energy Scan Cover (MSC-BE), the maximum total rotation angle at one vertex. Previous theoretical work on MSC-MS revealed a close connection to graph coloring and the cut cover problem, leading to hardness and approximability results. In this paper, we present polynomial-time algorithms for 1D instances of MSC-TE and MSC-BE, but NP-hardness proofs for bipartite 2D instances. For bipartite graphs in 2D, we also give 2-approximation algorithms for both MSC-TE and MSC-BE. Most importantly, we provide a comprehensive study of practical methods for all three problems. We compare three different mixed-integer programming and two constraint programming approaches, and show how to compute provably optimal solutions for geometric instances with up to 300 edges. Additionally, we compare the performance of different meta-heuristics for even larger instances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا