ترغب بنشر مسار تعليمي؟ اضغط هنا

Practical Open-Loop Optimistic Planning

53   0   0.0 ( 0 )
 نشر من قبل Edouard Leurent
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of online planning in a Markov Decision Process when given only access to a generative model, restricted to open-loop policies - i.e. sequences of actions - and under budget constraint. In this setting, the Open-Loop Optimistic Planning (OLOP) algorithm enjoys good theoretical guarantees but is overly conservative in practice, as we show in numerical experiments. We propose a modified version of the algorithm with tighter upper-confidence bounds, KLOLOP, that leads to better practical performances while retaining the sample complexity bound. Finally, we propose an efficient implementation that significantly improves the time complexity of both algorithms.

قيم البحث

اقرأ أيضاً

56 - Xin Liu , Bin Li , Pengyi Shi 2020
This paper considers constrained online dispatching with unknown arrival, reward and constraint distributions. We propose a novel online dispatching algorithm, named POND, standing for Pessimistic-Optimistic oNline Dispatching, which achieves $O(sqrt {T})$ regret and $O(1)$ constraint violation. Both bounds are sharp. Our experiments on synthetic and real datasets show that POND achieves low regret with minimal constraint violations.
317 - Bai Li , Shiqi Wang , Yunhan Jia 2020
Recent research has proposed the lottery ticket hypothesis, suggesting that for a deep neural network, there exist trainable sub-networks performing equally or better than the original model with commensurate training steps. While this discovery is i nsightful, finding proper sub-networks requires iterative training and pruning. The high cost incurred limits the applications of the lottery ticket hypothesis. We show there exists a subset of the aforementioned sub-networks that converge significantly faster during the training process and thus can mitigate the cost issue. We conduct extensive experiments to show such sub-networks consistently exist across various model structures for a restrictive setting of hyperparameters ($e.g.$, carefully selected learning rate, pruning ratio, and model capacity). As a practical application of our findings, we demonstrate that such sub-networks can help in cutting down the total time of adversarial training, a standard approach to improve robustness, by up to 49% on CIFAR-10 to achieve the state-of-the-art robustness.
68 - Yuhang Li , Wei Wang , Haoli Bai 2020
Network quantization has rapidly become one of the most widely used methods to compress and accelerate deep neural networks. Recent efforts propose to quantize weights and activations from different layers with different precision to improve the over all performance. However, it is challenging to find the optimal bitwidth (i.e., precision) for weights and activations of each layer efficiently. Meanwhile, it is yet unclear how to perform convolution for weights and activations of different precision efficiently on generic hardware platforms. To resolve these two issues, in this paper, we first propose an Efficient Bitwidth Search (EBS) algorithm, which reuses the meta weights for different quantization bitwidth and thus the strength for each candidate precision can be optimized directly w.r.t the objective without superfluous copies, reducing both the memory and computational cost significantly. Second, we propose a binary decomposition algorithm that converts weights and activations of different precision into binary matrices to make the mixed precision convolution efficient and practical. Experiment results on CIFAR10 and ImageNet datasets demonstrate our mixed precision QNN outperforms the handcrafted uniform bitwidth counterparts and other mixed precision techniques.
Many (but not all) approaches self-qualifying as meta-learning in deep learning and reinforcement learning fit a common pattern of approximating the solution to a nested optimization problem. In this paper, we give a formalization of this shared patt ern, which we call GIMLI, prove its general requirements, and derive a general-purpose algorithm for implementing similar approaches. Based on this analysis and algorithm, we describe a library of our design, higher, which we share with the community to assist and enable future research into these kinds of meta-learning approaches. We end the paper by showcasing the practical applications of this framework and library through illustrative experiments and ablation studies which they facilitate.
113 - Haim Avron 2012
We describe novel subgradient methods for a broad class of matrix optimization problems involving nuclear norm regularization. Unlike existing approaches, our method executes very cheap iterations by combining low-rank stochastic subgradients with ef ficient incremental SVD updates, made possible by highly optimized and parallelizable dense linear algebra operations on small matrices. Our practical algorithms always maintain a low-rank factorization of iterates that can be conveniently held in memory and efficiently multiplied to generate predictions in matrix completion settings. Empirical comparisons confirm that our approach is highly competitive with several recently proposed state-of-the-art solvers for such problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا