ترغب بنشر مسار تعليمي؟ اضغط هنا

On the origin and the manipulation of ferromagnetism in Fe$_3$GeTe$_2$: defects and dopings

88   0   0.0 ( 0 )
 نشر من قبل Seung Woo Jang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To understand the magnetic properties of Fe$_3$GeTe$_2$, we performed the detailed first-principles study. Contrary to the conventional wisdom, it is unambiguously shown that Fe$_3$GeTe$_2$ is not ferromagnetic but antiferromagnetic carrying zero net moment in its stoichiometric phase. Fe defect and hole doping are the keys to make this material ferromagnetic, which are shown by the magnetic force response as well as the total energy calculation with the explicit Fe defects and the varied system charges. Further, we found that the electron doping also induces the antiferro- to ferromagnetic transition. It is a crucial factor to understand the notable recent experiment of gate-controlled ferromagnetism. Our results not only unveil the origin of ferromagnetism of this material but also show how it can be manipulated with defect and doping.



قيم البحث

اقرأ أيضاً

Material research has been a major driving force in the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices; identifying new magnetic materials is key to better device performance and new device paradigm. The advent of two-dimensional van der Waals crystals creates new possibilities. This family of materials retain their chemical stability and structural integrity down to monolayers and, being atomically thin, are readily tuned by various kinds of gate modulation. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr$_2$Ge$_2$Te$_6$ and CrI$_3$ at low temperatures. Here, we developed a new device fabrication technique, and successfully isolated monolayers from layered metallic magnet Fe$_3$GeTe$_2$ for magnetotransport study. We found that the itinerant ferromagnetism persists in Fe$_3$GeTe$_2$ down to monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, $T_c$, is suppressed in pristine Fe$_3$GeTe$_2$ thin flakes. An ionic gate, however, dramatically raises the $T_c$ up to room temperature, significantly higher than the bulk $T_c$ of 205 Kelvin. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe$_3$GeTe$_2$ opens up opportunities for potential voltage-controlled magnetoelectronics based on atomically thin van der Waals crystals.
Microscopic origin of the ferromagnetic (FM) exchange coupling in CrCl$_3$ and CrI$_3$, their common aspects and differences, are investigated on the basis of density functional theory combined with realistic modeling approach for the analysis of int eratomic exchange interactions. We perform a comparative study based on the pseudopotential and linear muffin-tin orbital methods by treating the effects of electron exchange and correlation in GGA and LSDA, respectively. The results of ordinary band structure calculations are used in order to construct the minimal tight-binding type models describing the behavior of the magnetic Cr $3d$ and ligand $p$ bands in the basis of localized Wannier functions, and evaluate the effective exchange coupling ($J_{rm eff}$) between two Cr sublattices employing four different technique: (i) Second-order Greens function perturbation theory for infinitesimal spin rotations of the LSDA (GGA) potential at the Cr sites; (ii) Enforcement of the magnetic force theorem in order to treat both Cr and ligand spins on a localized footing; (iii) Constrained total-energy calculations with an external field, treated in the framework of self-consistent linear response theory. We argue that the ligand states play crucial role in the ferromagnetism of Cr trihalides, though their contribution to $J_{rm eff}$ strongly depends on additional assumptions, which are traced back to fundamentals of adiabatic spin dynamics. Particularly, by neglecting ligand spins in the Greens function method, $J_{rm eff}$ can easily become antiferromagnetic, while by treating them as localized, one can severely overestimate the FM coupling. The best considered approach is based on the constraint method, where the ligand states are allowed to relax in response to each instantaneous reorientation of the Cr spins, controlled by the external field.
The vanadates VO$_2$ and V$_2$O$_3$ are prototypical examples of strongly correlated materials that exhibit a metal-insulator transition. While the phase transitions in these materials have been studied extensively, there is a limited understanding o f how the properties of these materials are affected by the presence of defects and doping. In this study we investigate the impact of native point defects in the form of Frenkel defects on the structural, magnetic and electronic properties of VO$_2$ and V$_2$O$_3$, using first-principles calculations. In VO$_2$ the vanadium Frenkel pairs lead to a non-trivial insulating state. The unpaired vanadium interstitial bonds to a single dimer, which leads to a trimer that has one singlet state and one localized single-electron $S=1/2$ state. The unpaired broken dimer created by the vanadium vacancy also has a localized $S=1/2$ state. Thus, the insulating state is created by the singlet dimers, the trimer and the two localized $S=1/2$ states. Oxygen Frenkel pairs, on the other hand, lead to a metallic state in VO$_2$, but are expected to be present in much lower concentrations. In contrast, the Frenkel defects in V$_2$O$_3$ do not directly suppress the insulating character of the material. However, the disorder created by defects in V$_2$O$_3$ alters the local magnetic moments and in turn reduces the energy cost of a transition between the insulating and conducting phases of the material. We also find self-trapped small polarons in V$_2$O$_3$, which has implications for transport properties in the insulating phase.
Using symmetry analysis and density functional theory calculations, we uncover the nature of Dzyaloshinskii-Moriya interaction in Fe$_3$GeTe$_2$ monolayer. We show that while such an interaction might result in small distortion of the magnetic textur e on the short range, on the longrange Dzyaloshinskii-Moriya interaction favors in-plane Neel spin-spirals along equivalent directions of the crystal structure. Whereas our results show that the observed Neel skyrmions cannot be explained by the Dzyaloshinskii-Moriya interaction at the monolayer level, they suggest that canted magnetic texture shall arise at the boundary of Fe$_3$GeTe$_2$ nanoflakes or nanoribbons and, most interestingly, that homochiral planar magnetic textures could be stabilized.
Simultaneous co-existence of room-temperature(T) ferromagnetism and ferroelectricity in Fe doped BaTiO$_3$ (BTO) is intriguing, as such Fe doping into tetragonal BTO, a room-T ferroelectric (FE), results in the stabilization of its hexagonal polymorp h which is FE only below $sim$80K. Here, we investigate its origin and show that Fe-doped BTO has a mixed-phase room-temperature multiferroicity, where the ferromagnetism comes from the majority hexagonal phase and a minority tetragonal phase gives rise to the observed weak ferroelectricity. In order to achieve majority tetragonal phase (responsible for room-T ferroelectricity) in Fe-doped BTO, we investigate the role of different parameters which primarily control the PE hexagonal phase stability over the FE tetragonal one and identify three major factors namely, the effect of ionic size, Jahn-Teller (J-T) distortions and oxygen vacancies (OVs), to be primarily responsible. The effect of ionic size which can be qualitatively represented using the Goldschmidts tolerance (GT) factor seems to be the major dictating factor for the hexagonal phase stability. The understanding of these factors not only enables us to control them but also, achieve suitable co-doped BTO compound with enhanced room-T multiferroic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا