ترغب بنشر مسار تعليمي؟ اضغط هنا

Barium & related stars and their white-dwarf companions II. Main-sequence and subgiant stars

172   0   0.0 ( 0 )
 نشر من قبل Ana Escorza
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Barium (Ba) dwarfs and CH subgiants are the less-evolved analogues of Ba and CH giants. They are F- to G-type main-sequence stars polluted with heavy elements by a binary companion when the latter was on the Asymptotic Giant Branch (AGB). This companion is now a white dwarf that in most cases cannot be directly detected. We present a large systematic study of 60 objects classified as Ba dwarfs or CH subgiants. Combining radial-velocity measurements from HERMES and SALT high-resolution spectra with radial-velocity data from CORAVEL and CORALIE, we determine the orbital parameters of 27 systems. We also derive their masses by comparing their location in the Hertzsprung-Russell diagram with evolutionary models. We confirm that Ba dwarfs and CH subgiants are not at different evolutionary stages and have similar metallicities, despite their different names. Additionally, Ba giants appear significantly more massive than their main-sequence analogues. This is likely due to observational biases against the detection of hotter main-sequence post-mass-transfer objects. Combining our spectroscopic orbits with the Hipparcos astrometric data, we derive the orbital inclinations and the mass of the WD companion for four systems. Since this cannot be done for all systems in our sample yet (but should be with upcoming Gaia data releases), we also analyse the mass-function distribution of our binaries. We can model this distribution with very narrow mass distributions for the two components and random orbital orientation on the sky. Finally, based on BINSTAR evolutionary models, we suggest that the orbital evolution of low-mass Ba systems can be affected by a second phase of interaction along the Red Giant Branch of the Ba star, impacting on the eccentricities and periods of the giants.

قيم البحث

اقرأ أيضاً

This paper provides long-period and revised orbits for barium and S stars adding to previously published ones. The sample of barium stars with strong anomalies comprise all such stars present in the Lu et al. catalogue. We find orbital motion for all barium and extrinsic S stars monitored. We obtain the longest period known so far for a spectroscopic binary involving an S star, namely 57 Peg with a period of the order of 100 - 500 yr. We present the mass distribution for the barium stars, which ranges from 1 to 3 Msun, with a tail extending up to 5 Msun in the case of mild barium stars. This high-mass tail comprises mostly high-metallicity objects ([Fe/H] >= -0.1). Mass functions are compatible with WD companions and we derive their mass distribution which ranges from 0.5 to 1 Msun. Using the initial - final mass relationship established for field WDs, we derived the distribution of the mass ratio q = MAGB,ini / MBa (where MAGB, ini is the WD progenitor initial mass, i.e., the mass of the system former primary component) which is a proxy for the initial mass ratio. It appears that the distribution of q is highly non uniform, and significantly different for mild and strong barium stars, the latter being characterized by values mostly in excess of 1.4, whereas mild barium stars occupy the range 1 - 1.4. We investigate as well the correlation between abundances, orbital periods, metallicities, and masses (barium star and WD companion). The 105 orbits of post-mass-transfer systems presented in this paper pave the way for a comparison with binary-evolution models.
Solar-like oscillations have been observed by {{it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars and subgiants have been analysed using both Maximum Likelihood Estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths and mode heights. Here we report on the mode linewidth at maximum power and at maximum mode height for these 42 stars as a function of effective temperature. We show that the mode linewidth at either maximum mode height or maximum amplitude follows a scaling relation with effective temperature, which is a combination of a power law plus a lower bound. The typical power law index is about 13 for the linewidth derived from the maximum mode height, and about 16 for the linewidth derived from the maximum amplitude while the lower bound is about 0.3 microHz and 0.7 microHz, respectively. We stress that this scaling relation is only valid for the cool main-sequence stars and subgiants, and does not have predictive power outside the temperature range of these stars.
Chemical abundances for 15 elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are presented for 83 stellar members of the 4 Gyr old solar-metallicity open cluster M67. The sample contains stars spanning a wide range of evolutionary phases, from G dwarfs to red clump stars. The abundances were derived from near-IR ($lambda$1.5 -- 1.7$mu$m) high-resolution spectra ($R$ = 22,500) from the SDSS-IV/APOGEE survey. A 1-D LTE abundance analysis was carried out using the APOGEE synthetic spectral libraries, via chi-square minimization of the synthetic and observed spectra with the qASPCAP code. We found significant abundance differences ($sim$0.05 -- 0.30 dex) between the M67 member stars as a function of the stellar mass (or position on the HR diagram), where the abundance patterns exhibit a general depletion (in [X/H]) in stars at the main-sequence turnoff. The amount of the depletion is different for different elements. We find that atomic diffusion models provide, in general, good agreement with the abundance trends for most chemical species, supporting recent studies indicating that measurable atomic diffusion operates in M67 stars.
We computed Doppler beaming factors for DA, DB, and DBA white dwarf models, as well as for main sequence and giant stars covering the transmission curves of the Sloan, UBVRI, HiPERCAM, Kepler, TESS, and Gaia photometric systems. The calculations of t he limb-darkening coefficients for 3D models were carried out using the least-squares method for these photometric systems. The beaming factor calculations, which use realistic models of stellar atmospheres, show that the black body approximation is not accurate, particularly for the filters $u$, $u$, $U$, $g$, $g$, and $B$. The black body approach is only valid for high effective temperatures and/or long effective wavelengths. Therefore, for more accurate analyses of light curves, we recommend the use of the beaming factors presented in this paper. Concerning limb-darkening, the distribution of specific intensities for 3D models indicates that, in general, these models are less bright toward the limb than their 1D counterparts, which implies steeper profiles. To describe these intensities better, we recommend the use of the four-term law (also for 1D models) given the level of precision that is being achieved with Earth-based instruments and space missions such as Kepler and TESS (and PLATO in the future).
We present interferometric diameter measurements of 21 K- and M- dwarfs made with the CHARA Array. This sample is enhanced by literature radii measurements to form a data set of 33 K-M dwarfs with diameters measured to better than 5%. For all 33 star s, we compute absolute luminosities, linear radii, and effective temperatures (Teff). We develop empirical relations for simK0 to M4 main- sequence stars between the stellar Teff, radius, and luminosity to broad-band color indices and metallicity. These relations are valid for metallicities between [Fe/H] = -0.5 and +0.1 dex, and are accurate to ~2%, ~5%, and ~4% for Teff, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity dependent transformations to convert colors into stellar Teffs, radii, and luminosities. We find no sensitivity to metallicity on relations between global stellar properties, e.g., Teff-radius and Teff-luminosity. Robust examinations of single star Teffs and radii compared to evolutionary model predictions on the luminosity-Teff and luminosity-radius planes reveals that models overestimate the Teffs of stars with Teff < 5000 K by ~3%, and underestimate the radii of stars with radii < 0.7 Rodot by ~5%. These conclusions additionally suggest that the models overestimate the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for single stars to those of eclipsing binaries, we find that single and binary star radii are consistent. However, the literature Teffs for binary stars are systematically lower compared to Teffs of single stars by ~ 200 to 300 K. Lastly, we present a empirically determined HR diagram for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا