ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Diameters and Temperatures II. Main Sequence K & M Stars

120   0   0.0 ( 0 )
 نشر من قبل Tabetha Boyajian
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present interferometric diameter measurements of 21 K- and M- dwarfs made with the CHARA Array. This sample is enhanced by literature radii measurements to form a data set of 33 K-M dwarfs with diameters measured to better than 5%. For all 33 stars, we compute absolute luminosities, linear radii, and effective temperatures (Teff). We develop empirical relations for simK0 to M4 main- sequence stars between the stellar Teff, radius, and luminosity to broad-band color indices and metallicity. These relations are valid for metallicities between [Fe/H] = -0.5 and +0.1 dex, and are accurate to ~2%, ~5%, and ~4% for Teff, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity dependent transformations to convert colors into stellar Teffs, radii, and luminosities. We find no sensitivity to metallicity on relations between global stellar properties, e.g., Teff-radius and Teff-luminosity. Robust examinations of single star Teffs and radii compared to evolutionary model predictions on the luminosity-Teff and luminosity-radius planes reveals that models overestimate the Teffs of stars with Teff < 5000 K by ~3%, and underestimate the radii of stars with radii < 0.7 Rodot by ~5%. These conclusions additionally suggest that the models overestimate the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for single stars to those of eclipsing binaries, we find that single and binary star radii are consistent. However, the literature Teffs for binary stars are systematically lower compared to Teffs of single stars by ~ 200 to 300 K. Lastly, we present a empirically determined HR diagram for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system. [abridged]

قيم البحث

اقرأ أيضاً

Brightness variations due to dark spots on the stellar surface encode information about stellar surface rotation and magnetic activity. In this work, we analyze the Kepler long-cadence data of 26,521 main-sequence stars of spectral types M and K in o rder to measure their surface rotation and photometric activity level. Rotation-period estimates are obtained by the combination of a wavelet analysis and autocorrelation function of the light curves. Reliable rotation estimates are determined by comparing the results from the different rotation diagnostics and four data sets. We also measure the photometric activity proxy Sph using the amplitude of the flux variations on an appropriate timescale. We report rotation periods and photometric activity proxies for about 60 per cent of the sample, including 4,431 targets for which McQuillan et al. (2013a,2014) did not report a rotation period. For the common targets with rotation estimates in this study and in McQuillan et al. (2013a,2014), our rotation periods agree within 99 per cent. In this work, we also identify potential polluters, such as misclassified red giants and classical pulsator candidates. Within the parameter range we study, there is a mild tendency for hotter stars to have shorter rotation periods. The photometric activity proxy spans a wider range of values with increasing effective temperature. The rotation period and photometric activity proxy are also related, with Sph being larger for fast rotators. Similar to McQuillan et al. (2013a,2014), we find a bimodal distribution of rotation periods.
Using Georgia State Universitys CHARA Array interferometer, we measured angular diameters for 25 giant stars, six of which host exoplanets. The combination of these measurements and Hipparcos parallaxes produce physical linear radii for the sample. E xcept for two outliers, our values match angular diameters and physical radii estimated using photometric methods to within the associated errors with the advantage that our uncertainties are significantly lower. We also calculated the effective temperatures for the stars using the newly-measured diameters. Our values do not match those derived from spectroscopic observations as well, perhaps due to the inherent properties of the methods used or because of a missing source of extinction in the stellar models that would affect the spectroscopic temperatures.
193 - Kaspar von Braun 2013
We use near-infrared interferometric data coupled with trigonometric parallax values and spectral energy distribution fitting to directly determine stellar radii, effective temperatures, and luminosities for the exoplanet host stars 61 Vir, $rho$ CrB , GJ 176, GJ 614, GJ 649, GJ 876, HD 1461, HD 7924, HD 33564, HD 107383, and HD 210702. Three of these targets are M dwarfs. Statistical uncertainties in the stellar radii and effective temperatures range from 0.5% -- 5% and from 0.2% -- 2%, respectively. For eight of these targets, this work presents the first directly determined values of radius and temperature; for the other three, we provide updates to their properties. The stellar fundamental parameters are used to estimate stellar mass and calculate the location and extent of each systems circumstellar habitable zone. Two of these systems have planets that spend at least parts of their respective orbits in the system habitable zone: two of GJ 876s four planets and the planet that orbits HD 33564. We find that our value for GJ 876s stellar radius is more than 20% larger than previous estimates and frequently used values in the astronomical literature.
Barium (Ba) dwarfs and CH subgiants are the less-evolved analogues of Ba and CH giants. They are F- to G-type main-sequence stars polluted with heavy elements by a binary companion when the latter was on the Asymptotic Giant Branch (AGB). This compan ion is now a white dwarf that in most cases cannot be directly detected. We present a large systematic study of 60 objects classified as Ba dwarfs or CH subgiants. Combining radial-velocity measurements from HERMES and SALT high-resolution spectra with radial-velocity data from CORAVEL and CORALIE, we determine the orbital parameters of 27 systems. We also derive their masses by comparing their location in the Hertzsprung-Russell diagram with evolutionary models. We confirm that Ba dwarfs and CH subgiants are not at different evolutionary stages and have similar metallicities, despite their different names. Additionally, Ba giants appear significantly more massive than their main-sequence analogues. This is likely due to observational biases against the detection of hotter main-sequence post-mass-transfer objects. Combining our spectroscopic orbits with the Hipparcos astrometric data, we derive the orbital inclinations and the mass of the WD companion for four systems. Since this cannot be done for all systems in our sample yet (but should be with upcoming Gaia data releases), we also analyse the mass-function distribution of our binaries. We can model this distribution with very narrow mass distributions for the two components and random orbital orientation on the sky. Finally, based on BINSTAR evolutionary models, we suggest that the orbital evolution of low-mass Ba systems can be affected by a second phase of interaction along the Red Giant Branch of the Ba star, impacting on the eccentricities and periods of the giants.
The inhibition of small-scale convection in the Sun dominates the long-term radial velocity (RV) variability: it therefore has a critical effect on light exoplanet detectability using RV techniques. We here extend our previous analysis of stellar con vective blueshift and its dependence on magnetic activity to a larger sample of stars in order to extend the Teff range, to study the impact of other stellar properties, and finally to improve the comparison between observed RV jitter and expected RV variations. We estimate a differential velocity shift for Fe and Ti lines of different depths and derive an absolute convective blueshift using the Sun as a reference for a sample of 360 F7-K4 stars with different properties (age, Teff, metallicity). We confirm the strong variation in convective blueshift with Teff and its dependence on (as shown in the line list in Paper I) activity level. Although we do not observe a significant effect of age or cyclic activity, stars with a higher metallicity tend to have a lower convective blueshift, with a larger effect than expected from numerical simulations. Finally, we estimate that for 71% of the stars in our sample the RV and LogRHK variations are compatible with the effect of activity on convection, as observed in the solar case, while for the other stars, other sources (such as binarity or companions) must be invoked to explain the large RV variations. We also confirm a relationship between LogRHK and metallicity, which may affect discussions of the possible relationship between metallicity and exoplanets, as RV surveys are biased toward low LogRHK and possibly toward high-metallicity stars. We conclude that activity and metallicity strongly affect the small-scale convection levels in stars in the F7-K4 range, with a lower amplitude for the lower mass stars and a larger amplitude for low-metallicity stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا