ترغب بنشر مسار تعليمي؟ اضغط هنا

SEQ^3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression

83   0   0.0 ( 0 )
 نشر من قبل Christos Baziotis
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural sequence-to-sequence models are currently the dominant approach in several natural language processing tasks, but require large parallel corpora. We present a sequence-to-sequence-to-sequence autoencoder (SEQ^3), consisting of two chained encoder-decoder pairs, with words used as a sequence of discrete latent variables. We apply the proposed model to unsupervised abstractive sentence compression, where the first and last sequences are the input and reconstructed sentences, respectively, while the middle sequence is the compressed sentence. Constraining the length of the latent word sequences forces the model to distill important information from the input. A pretrained language model, acting as a prior over the latent sequences, encourages the compressed sentences to be human-readable. Continuous relaxations enable us to sample from categorical distributions, allowing gradient-based optimization, unlike alternatives that rely on reinforcement learning. The proposed model does not require parallel text-summary pairs, achieving promising results in unsupervised sentence compression on benchmark datasets.



قيم البحث

اقرأ أيضاً

80 - Chengyue Gong , Xu Tan , Di He 2018
Maximum-likelihood estimation (MLE) is widely used in sequence to sequence tasks for model training. It uniformly treats the generation/prediction of each target token as multi-class classification, and yields non-smooth prediction probabilities: in a target sequence, some tokens are predicted with small probabilities while other tokens are with large probabilities. According to our empirical study, we find that the non-smoothness of the probabilities results in low quality of generated sequences. In this paper, we propose a sentence-wise regularization method which aims to output smooth prediction probabilities for all the tokens in the target sequence. Our proposed method can automatically adjust the weights and gradients of each token in one sentence to ensure the predictions in a sequence uniformly well. Experiments on three neural machine translation tasks and one text summarization task show that our method outperforms conventional MLE loss on all these tasks and achieves promising BLEU scores on WMT14 English-German and WMT17 Chinese-English translation task.
In this work, we model abstractive text summarization using Attentional Encoder-Decoder Recurrent Neural Networks, and show that they achieve state-of-the-art performance on two different corpora. We propose several novel models that address critical problems in summarization that are not adequately modeled by the basic architecture, such as modeling key-words, capturing the hierarchy of sentence-to-word structure, and emitting words that are rare or unseen at training time. Our work shows that many of our proposed models contribute to further improvement in performance. We also propose a new dataset consisting of multi-sentence summaries, and establish performance benchmarks for further research.
92 - Yunhao Yang , Zhaokun Xue 2021
Heterogeneity of sentences exists in sequence to sequence tasks such as machine translation. Sentences with largely varied meanings or grammatical structures may increase the difficulty of convergence while training the network. In this paper, we int roduce a model to resolve the heterogeneity in the sequence to sequence task. The Multi-filter Gaussian Mixture Autoencoder (MGMAE) utilizes an autoencoder to learn the representations of the inputs. The representations are the outputs from the encoder, lying in the latent space whose dimension is the hidden dimension of the encoder. The representations of training data in the latent space are used to train Gaussian mixtures. The latent space representations are divided into several mixtures of Gaussian distributions. A filter (decoder) is tuned to fit the data in one of the Gaussian distributions specifically. Each Gaussian is corresponding to one filter so that the filter is responsible for the heterogeneity within this Gaussian. Thus the heterogeneity of the training data can be resolved. Comparative experiments are conducted on the Geo-query dataset and English-French translation. Our experiments show that compares to the traditional encoder-decoder model, this network achieves better performance on sequence to sequence tasks such as machine translation and question answering.
Pre-trained sequence-to-sequence (seq-to-seq) models have significantly improved the accuracy of several language generation tasks, including abstractive summarization. Although the fluency of abstractive summarization has been greatly improved by fi ne-tuning these models, it is not clear whether they can also identify the important parts of the source text to be included in the summary. In this study, we investigated the effectiveness of combining saliency models that identify the important parts of the source text with the pre-trained seq-to-seq models through extensive experiments. We also proposed a new combination model consisting of a saliency model that extracts a token sequence from a source text and a seq-to-seq model that takes the sequence as an additional input text. Experimental results showed that most of the combination models outperformed a simple fine-tuned seq-to-seq model on both the CNN/DM and XSum datasets even if the seq-to-seq model is pre-trained on large-scale corpora. Moreover, for the CNN/DM dataset, the proposed combination model exceeded the previous best-performed model by 1.33 points on ROUGE-L.
The vector representations of fixed dimensionality for words (in text) offered by Word2Vec have been shown to be very useful in many application scenarios, in particular due to the semantic information they carry. This paper proposes a parallel versi on, the Audio Word2Vec. It offers the vector representations of fixed dimensionality for variable-length audio segments. These vector representations are shown to describe the sequential phonetic structures of the audio segments to a good degree, with very attractive real world applications such as query-by-example Spoken Term Detection (STD). In this STD application, the proposed approach significantly outperformed the conventional Dynamic Time Warping (DTW) based approaches at significantly lower computation requirements. We propose unsupervised learning of Audio Word2Vec from audio data without human annotation using Sequence-to-sequence Audoencoder (SA). SA consists of two RNNs equipped with Long Short-Term Memory (LSTM) units: the first RNN (encoder) maps the input audio sequence into a vector representation of fixed dimensionality, and the second RNN (decoder) maps the representation back to the input audio sequence. The two RNNs are jointly trained by minimizing the reconstruction error. Denoising Sequence-to-sequence Autoencoder (DSA) is furthered proposed offering more robust learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا