ترغب بنشر مسار تعليمي؟ اضغط هنا

Audio Word2Vec: Unsupervised Learning of Audio Segment Representations using Sequence-to-sequence Autoencoder

146   0   0.0 ( 0 )
 نشر من قبل Yu-An Chung
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The vector representations of fixed dimensionality for words (in text) offered by Word2Vec have been shown to be very useful in many application scenarios, in particular due to the semantic information they carry. This paper proposes a parallel version, the Audio Word2Vec. It offers the vector representations of fixed dimensionality for variable-length audio segments. These vector representations are shown to describe the sequential phonetic structures of the audio segments to a good degree, with very attractive real world applications such as query-by-example Spoken Term Detection (STD). In this STD application, the proposed approach significantly outperformed the conventional Dynamic Time Warping (DTW) based approaches at significantly lower computation requirements. We propose unsupervised learning of Audio Word2Vec from audio data without human annotation using Sequence-to-sequence Audoencoder (SA). SA consists of two RNNs equipped with Long Short-Term Memory (LSTM) units: the first RNN (encoder) maps the input audio sequence into a vector representation of fixed dimensionality, and the second RNN (decoder) maps the representation back to the input audio sequence. The two RNNs are jointly trained by minimizing the reconstruction error. Denoising Sequence-to-sequence Autoencoder (DSA) is furthered proposed offering more robust learning.

قيم البحث

اقرأ أيضاً

135 - Zixing Zhang , Ding Liu , Jing Han 2017
Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still chall enging. Previous methods mainly focused on designing the audio features in a `hand-crafted manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame level. In this article, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and an RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC.
Recent advances suggest the advantage of multi-modal training in comparison with single-modal methods. In contrast to this view, in our work we find that similar gain can be obtained from training with different formats of a single modality. In parti cular, we investigate the use of the contrastive learning framework to learn audio representations by maximizing the agreement between the raw audio and its spectral representation. We find a significant gain using this multi-format strategy against the single-format counterparts. Moreover, on the downstream AudioSet and ESC-50 classification task, our audio-only approach achieves new state-of-the-art results with a mean average precision of 0.376 and an accuracy of 90.5%, respectively.
We present a multimodal framework to learn general audio representations from videos. Existing contrastive audio representation learning methods mainly focus on using the audio modality alone during training. In this work, we show that additional inf ormation contained in video can be utilized to greatly improve the learned features. First, we demonstrate that our contrastive framework does not require high resolution images to learn good audio features. This allows us to scale up the training batch size, while keeping the computational load incurred by the additional video modality to a reasonable level. Second, we use augmentations that mix together different samples. We show that this is effective to make the proxy task harder, which leads to substantial performance improvements when increasing the batch size. As a result, our audio model achieves a state-of-the-art of 42.4 mAP on the AudioSet classification downstream task, closing the gap between supervised and self-supervised methods trained on the same dataset. Moreover, we show that our method is advantageous on a broad range of non-semantic audio tasks, including speaker identification, keyword spotting, language identification, and music instrument classification.
In this paper, we focus on the problem of content-based retrieval for audio, which aims to retrieve all semantically similar audio recordings for a given audio clip query. This problem is similar to the problem of query by example of audio, which aim s to retrieve media samples from a database, which are similar to the user-provided example. We propose a novel approach which encodes the audio into a vector representation using Siamese Neural Networks. The goal is to obtain an encoding similar for files belonging to the same audio class, thus allowing retrieval of semantically similar audio. Using simple similarity measures such as those based on simple euclidean distance and cosine similarity we show that these representations can be very effectively used for retrieving recordings similar in audio content.
Fake audio attack becomes a major threat to the speaker verification system. Although current detection approaches have achieved promising results on dataset-specific scenarios, they encounter difficulties on unseen spoofing data. Fine-tuning and ret raining from scratch have been applied to incorporate new data. However, fine-tuning leads to performance degradation on previous data. Retraining takes a lot of time and computation resources. Besides, previous data are unavailable due to privacy in some situations. To solve the above problems, this paper proposes detecting fake without forgetting, a continual-learning-based method, to make the model learn new spoofing attacks incrementally. A knowledge distillation loss is introduced to loss function to preserve the memory of original model. Supposing the distribution of genuine voice is consistent among different scenarios, an extra embedding similarity loss is used as another constraint to further do a positive sample alignment. Experiments are conducted on the ASVspoof2019 dataset. The results show that our proposed method outperforms fine-tuning by the relative reduction of average equal error rate up to 81.62%.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا