ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling the nonlinear optical properties of MgO by tailoring the electronic structure

137   0   0.0 ( 0 )
 نشر من قبل Mukhtar Hussain
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of the non-linear response of matter to high electric fields has recently encompassed harmonic generation in solids at near-infrared (NIR) driving wavelengths. Interest has been driven by the prospect of ultrafast signal processing and all-optical mapping of electron wave-functions in solids. Engineering solid-state band structures to control the non-linear process has already been highlighted theoretically. Here, we show experimentally for the first time that second harmonic generation (SHG) can be enhanced by doping crystals of magnesium oxide (MgO) with chromium (Cr) atoms. We show that the degree of enhancement depends non-linearly on dopant concentration. The SHG efficiency is shown to increase when Cr dopants are introduced into pure MgO. A physical picture of the effect of Cr dopants is aided by density functional theory (DFT) calculations of the electronic structure for pure and doped samples. This work shows an unambiguous enhancement of the SHG efficiency by modifying the electronic structure. The observed effects are consistent with an electronic structure that facilitates the surface induced SHG and demonstrates a minimal angular dependence. This work highlights the potential of manipulating the electronic structure of solids to control or test theories of their non-linear optical response.



قيم البحث

اقرأ أيضاً

We introduce a simplified version of the steady-state ab initio laser theory for calculating the effects of mode competition in continuous wave lasers using the passive cavity resonances. This new theory harnesses widely available numerical methods t hat can efficiently calculate the passive cavity resonances, with negligible additional computational overhead. Using this theory, we demonstrate that the pump profile of the laser cavity can be optimized both for highly multi-mode and single-mode emission. An open source implementation of this method has been made available.
We present a method to simultaneously engineer the energy-momentum dispersion and the local density of optical states. Using vertical symmetry-breaking in high-contrast gratings, we enable the mixing of modes with different parities, thus producing h ybridized modes with controlled dispersion. By tuning geometric parameters, we control the coupling between Bloch modes, leading to flatband, M- and W-shaped dispersion as well as Dirac dispersion. Such a platform opens up a new way to control the direction of emitted photons, and to enhance the spontaneous emission into desired modes. We then experimentally demonstrate that this method can be used to redirect light emission from weak emitters -- defects in Silicon -- to optical modes with adjustable density of states and angle of emission.
Understanding cladding properties is crucial for designing microstructured optical fibers. This is particularly acute for Inhibited-Coupling guiding fibers because of the reliance of their core guidance on the core and cladding mode-field overlap int egral. Consequently, careful planning of the fiber cladding parameters allows obtaining fibers with optimized characteristics such as low loss and broad transmission bandwidth. In this manuscript, we report on how one can tailor the modal properties of hollow-core photonic crystal fibers by adequately modifying the fiber cladding. We show that the alteration of the position of the unity-tubes in the cladding of tubular fibers can alter the loss hierarchy of the modes in these fibers, and exhibit salient polarization propriety. In this context, we present two fibers with different cladding structures which favor propagation of higher order core modes - namely LP11 and LP21 modes. Additionally, we provide discussions on mode transformations in these fibers and show that one can obtain uncommon intensity and polarization profiles at the fiber output. This allows the fiber to act as a mode intensity and polarization shaper. We envisage this novel concept can be useful for a variety of applications such as hollow core fiber based atom optics, atom-surface physics, sensing and nonlinear optics.
154 - A. Akrap , Y. M. Dai , W. Wu 2013
The complex optical properties of a single crystal of hexagonal FeCrAs ($T_N simeq 125$ K) have been determined above and below $T_N$ over a wide frequency range in the planes (along the $b$ axis), and along the perpendicular ($c$ axis) direction. At room temperature, the optical conductivity $sigma_1(omega)$ has an anisotropic metallic character. The electronic band structure reveals two bands crossing the Fermi level, allowing the optical properties to be described by two free-carrier (Drude) contributions consisting of a strong, broad component and a weak, narrow term that describes the increase in $sigma_1(omega)$ below $simeq 15$ meV. The dc-resistivity of FeCrAs is ``non-metallic, meaning that it rises in power-law fashion with decreasing temperature, without any signature of a transport gap. In the analysis of the optical conductivity, the scattering rates for both Drude contributions track the dc-resistivity quite well, leading us to conclude that the non-metallic resistivity of FeCrAs is primarily due to a scattering rate that increases with decreasing temperature, rather than the loss of free carriers. The power law $sigma_1(omega) propto omega^{-0.6}$ is observed in the near-infrared region and as $Trightarrow T_N$ spectral weight is transferred from low to high energy ($gtrsim 0.6$ eV); these effects may be explained by either the two-Drude model or Hunds coupling. We also find that a low-frequency in-plane phonon mode decreases in frequency for $T < T_N$, suggesting the possibility of spin-phonon coupling.
A many-mode laser with nonlinear modal interaction could serve as a model system to study many-body physics. However, precise and continuous tuning of the interaction strength over a wide range is challenging. Here, we present a unique method for con trolling lasing mode structures by introducing random phase fluctuation to a nearly degenerate cavity. We show numerically and experimentally that as the characteristic scale of phase fluctuation decreases by two orders of magnitude, the transverse modes become fragmented and the reduction of their spatial overlap suppresses modal competition for gain, allowing more modes to lase. The tunability, flexibility and robustness of our system provides a powerful platform for investigating many-body phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا