ﻻ يوجد ملخص باللغة العربية
A many-mode laser with nonlinear modal interaction could serve as a model system to study many-body physics. However, precise and continuous tuning of the interaction strength over a wide range is challenging. Here, we present a unique method for controlling lasing mode structures by introducing random phase fluctuation to a nearly degenerate cavity. We show numerically and experimentally that as the characteristic scale of phase fluctuation decreases by two orders of magnitude, the transverse modes become fragmented and the reduction of their spatial overlap suppresses modal competition for gain, allowing more modes to lase. The tunability, flexibility and robustness of our system provides a powerful platform for investigating many-body phenomena.
We introduce a simplified version of the steady-state ab initio laser theory for calculating the effects of mode competition in continuous wave lasers using the passive cavity resonances. This new theory harnesses widely available numerical methods t
We report on the experimental investigation of the efficiency of some nonlinear crystals to generate microwave (RF) radiation as a result of optical rectification (OR) when irradiated with intense pulse trains delivered by a mode-locked laser at $106
A model based on Lambs theory of gas lasers is applied to a He-Ne ring laser gyroscope in order to estimate and remove the laser dynamics contribution from the rotation measurements. The intensities of the counter-propagating laser beams exiting one
Beat note measurements between a mode-locked and a continuous-wave laser as well as between two mode-locked sources were used to demonstrate that the sub-threshold, cavity filtered, amplified spontaneous emission is not stationary even when a fast mo
A metasurface hologram combines fine spatial resolution and large viewing angles with a planar form factor and compact size. However, it suffers coherent artifacts originating from electromagnetic cross-talk between closely packed meta-atoms and fabr