ﻻ يوجد ملخص باللغة العربية
ALMA surveys have suggested that the dust in Class II disks may not be enough to explain the averaged solid mass in exoplanets, under the assumption that the mm disk continuum emission is optically thin. This optically thin assumption seems to be supported by recent DSHARP observations where the measured optical depths of spatially resolved disks are mostly less than one. However, we point out that dust scattering can considerably reduce the emission from an optically thick region. If that scattering is ignored, the optical depth will be considerably underestimated. An optically thick disk with scattering can be misidentified as an optically thin disk. Dust scattering in more inclined disks can reduce the intensity even further, making the disk look even fainter. The measured optical depth of $sim$0.6 in several DSHARP disks can be naturally explained by optically thick dust with an albedo of $sim$0.9 at 1.25 mm. Using the DSHARP opacity, this albedo corresponds to a dust population with the maximum grain size ($s_{max}$) of 0.1-1 mm. For optically thick scattering disks, the measured spectral index $alpha$ can be either larger or smaller than 2 depending on if the dust albedo increases or decreases with wavelength. Using the DSHARP opacity, $alpha<2$ corresponds to $s_{max}$ of 0.03-0.3 mm. We describe how this optically thick scattering scenario could explain the observed scaling between submm continuum sizes and luminosities, and might help ease the tension between the dust size constraints from polarization and dust continuum measurements. We suggest that a significant amount of disk mass can be hidden from ALMA observations at short millimeter wavelengths. For compact disks smaller than 30 au, we can easily underestimate the dust mass by more than a factor of 10. Longer wavelength observations (e.g. VLA or SKA) are desired to probe the dust mass in disks.
In this work, we study how the dust coagulation/fragmentation will influence the evolution and observational appearances of vortices induced by a massive planet embedded in a low viscosity disk by performing global 2D high-resolution hydrodynamical s
The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we
In recent years evidence has been building that planet formation starts early, in the first $sim$ 0.5 Myr. Studying the dust masses available in young disks enables understanding the origin of planetary systems since mature disks are lacking the soli
Circumstantial evidence suggests that most known extra-solar planetary systems are survivors of violent dynamical instabilities. Here we explore how giant planet instabilities affect the formation and survival of terrestrial planets. We simulate plan
Planet formation is thought to occur in discs around young stars by the aggregation of small dust grains into much larger objects. The growth from grains to pebbles and from planetesimals to planets is now fairly well understood. The intermediate sta