ترغب بنشر مسار تعليمي؟ اضغط هنا

Stringent limits on the magnetic field strength in the disc of TW Hya: ALMA observations of CN polarisation

245   0   0.0 ( 0 )
 نشر من قبل Wouter Vlemmings
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite their importance in the star formation process, measurements of magnetic field strength in proto-planetary discs remain rare. While linear polarisation of dust and molecular lines can give insight into the magnetic field structure, only observations of the circular polarisation produced by Zeeman splitting provide a direct measurement of magnetic field strenghts. One of the most promising probes of magnetic field strengths is the paramagnetic radical CN. Here we present the first Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Zeeman splitting of CN in the disc of TW~Hya. The observations indicate an excellent polarisation performance of ALMA, but fail to detect significant polarisation. An analysis of eight individual CN hyperfine components as well as a stacking analysis of the strongest (non-blended) hyperfine components yields the most stringent limits obtained so far on the magnetic field strength in a proto-planetary disc. We find that the vertical component of the magnetic field $|B_z|<0.8$~mG ($1sigma$ limit). We also provide a $1sigma$ toroidal field strength limit of $<30$~mG. These limits rule out some of the earlier accretion disc models, but remain consistent with the most recent detailed models with efficient advection. We detect marginal linear polarisation from the dust continuum, but the almost purely toroidal geometry of the polarisation vectors implies that his is due to radiatively aligned grains.

قيم البحث

اقرأ أيضاً

While magnetic fields likely play an important role in driving the evolution of protoplanetary disks through angular momentum transport, observational evidence of magnetic fields has only been found in a small number of disks. Although dust continuum linear polarization has been detected in an increasing number of disks, its pattern is more consistent with that from dust scattering than from magnetically aligned grains in the vast majority of cases. Continuum linear polarization from dust grains aligned to a magnetic field can reveal information about the magnetic fields direction, but not its strength. On the other hand, observations of circular polarization in molecular lines produced by Zeeman splitting offer a direct measure of the line-of-sight magnetic field strength in disks. We present upper limits on the net toroidal and vertical magnetic field strengths in the protoplanetary disk AS 209 derived from Zeeman splitting observations of the CN 2-1 line. The 3$sigma$ upper limit on the net line-of-sight magnetic field strength in AS 209 is 5.0 mG on the redshifted side of the disk and 4.2 mG on the blueshifted side of the disk. Given the disks inclination angle, we set a 3$sigma$ upper limit on the net toroidal magnetic field strength of 8.7 and 7.3 mG for the red and blue sides of the disk, respectively, and 6.2 and 5.2 mG on the net vertical magnetic field on the red and blue sides of the disk. If magnetic disk winds are a significant mechanism of angular momentum transport in the disk, magnetic fields of a strength close to the upper limits would be sufficient to drive accretion at the rate previously inferred for regions near the protostar.
We report observations of the cyanide anion, CN, in the disk around TW~Hya covering the $N=1-0$, $N=2-1$ and $N=3-2$ transitions. Using line stacking techniques, 24 hyperfine transitions are detected out of the 30 within the observed frequency ranges . Exploiting the super-spectral resolution from the line stacking method reveals the splitting of hyperfine components previously unresolved by laboratory spectroscopy. All transitions display a similar emission morphology, characterized by an azimuthally symmetric ring, peaking at $approx 45$~au (0.75), and a diffuse outer tail extending out to the disk edge at $approx 200$~au. Excitation analyses assuming local thermodynamic equilibrium (LTE) yield excitation temperatures in excess of the derived kinetic temperatures based on the local line widths for all fine structure groups, suggesting assumptions of LTE are invalid. Using the 0D radiative transfer code RADEX, we demonstrate that such non-LTE effects may be present when the local H$_2$ density drops to $10^{7}~{rm cm^{-3}}$ and below. Comparison with models of TW~Hya find similar densities at elevated regions in the disk, typically $z , / , r gtrsim 0.2$, consistent with model predictions where CN is formed via vibrationally excited H$_2$ in the disk atmospheric layers where UV irradiation is less attenuated.
We test the hypothesis that the sub-millimetre thermal emission and scattered light gaps seen in recent observations of TW Hya are caused by planet-disc interactions. We perform global three-dimensional dusty smoothed particle hydrodynamics simulatio ns, comparing synthetic observations of our models with dust thermal emission, CO emission and scattered light observations. We find that the dust gaps observed at 24 au and 41 au can be explained by two super-Earths ($sim 4 mathrm{M}_{oplus}$). A planet of approximately Saturn-mass can explain the CO emission and the depth and width of the gap seen in scattered light at 94 au. Our model produces a prominent spiral arm while there are only hints of this in the data. To avoid runaway growth and migration of the planets we require a disc mass of $lesssim 10^{-2},mathrm{M}_{odot}$ in agreement with CO observations but 10$-$100 times lower than the estimate from HD line emission.
We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the $^{12}$CO $J = 3-2$ line at a spatial resolution of 8 AU (0farcs14). The CO emis sion exhibits a bright inner core, a shoulder at $rapprox70$ AU, and a prominent break in slope at $rapprox90$ AU. Radiative transfer modeling is used to demonstrate that the emission morphology can be reasonably reproduced with a $^{12}$CO column density profile featuring a steep decrease at $rapprox15$ AU and a secondary bump peaking at $rapprox70$ AU. Similar features have been identified in observations of rarer CO isotopologues, which trace heights closer to the midplane. Substructure in the underlying gas distribution or radially varying CO depletion that affects much of the disks vertical extent may explain the shared emission features of the main CO isotopologues. We also combine archival 1.3 mm and 870 $mu$m continuum observations to produce a spectral index map at a spatial resolution of 2 AU. The spectral index rises sharply at the continuum emission gaps at radii of 25, 41, and 47 AU. This behavior suggests that the grains within the gaps are no larger than a few millimeters. Outside the continuum gaps, the low spectral index values of $alphaapprox 2$ indicate either that grains up to centimeter size are present, or that the bright continuum rings are marginally optically thick at millimeter wavelengths.
337 - Kamber R. Schwarz 2016
CO is widely used as a tracer of molecular gas. However, there is now mounting evidence that gas phase carbon is depleted in the disk around TW Hya. Previous efforts to quantify this depletion have been hampered by uncertainties regarding the radial thermal structure in the disk. Here we present resolved ALMA observations of 13CO 3-2, C18O 3-2, 13CO 6-5, and C18O 6-5 emission in TW Hya, which allow us to derive radial gas temperature and gas surface density profiles, as well as map the CO abundance as a function of radius. These observations provide a measurement of the surface CO snowline at ~30 AU and show evidence for an outer ring of CO emission centered at 53 AU, a feature previously seen only in less abundant species. Further, the derived CO gas temperature profile constrains the freeze-out temperature of CO in the warm molecular layer to < 21 K. Combined with the previous detection of HD 1-0, these data constrain the surface density of the warm H2 gas in the inner ~30 AU. We find that CO is depleted by two orders of magnitude from R=10-60 AU, with the small amount of CO returning to the gas phase inside the surface CO snowline insufficient to explain the overall depletion. Finally, this new data is used in conjunction with previous modeling of the TW Hya disk to constrain the midplane CO snowline to 17-23 AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا