ﻻ يوجد ملخص باللغة العربية
We report observations of the cyanide anion, CN, in the disk around TW~Hya covering the $N=1-0$, $N=2-1$ and $N=3-2$ transitions. Using line stacking techniques, 24 hyperfine transitions are detected out of the 30 within the observed frequency ranges. Exploiting the super-spectral resolution from the line stacking method reveals the splitting of hyperfine components previously unresolved by laboratory spectroscopy. All transitions display a similar emission morphology, characterized by an azimuthally symmetric ring, peaking at $approx 45$~au (0.75), and a diffuse outer tail extending out to the disk edge at $approx 200$~au. Excitation analyses assuming local thermodynamic equilibrium (LTE) yield excitation temperatures in excess of the derived kinetic temperatures based on the local line widths for all fine structure groups, suggesting assumptions of LTE are invalid. Using the 0D radiative transfer code RADEX, we demonstrate that such non-LTE effects may be present when the local H$_2$ density drops to $10^{7}~{rm cm^{-3}}$ and below. Comparison with models of TW~Hya find similar densities at elevated regions in the disk, typically $z , / , r gtrsim 0.2$, consistent with model predictions where CN is formed via vibrationally excited H$_2$ in the disk atmospheric layers where UV irradiation is less attenuated.
The recent detection of gas-phase methanol (CH$_3$OH) lines in the disc of TW Hya by Walsh et al. provided the first observational constraints on the complex O-bearing organic content in protoplanetary discs. The emission has a ring-like morphology,
We present a detailed analysis of the spatially and spectrally resolved 12CO J=2-1 and J=3-2 emission lines from the TW Hya circumstellar disk, based on science verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA). These lin
We obtain high spatial and spectral resolution images of the CO J=2-1, CN N=2-1 and CS J=5-4 emission with ALMA in Cycle~2. The radial distribution of the turbulent broadening is derived with three approaches: two `direct and one modelling. The first
Despite their importance in the star formation process, measurements of magnetic field strength in proto-planetary discs remain rare. While linear polarisation of dust and molecular lines can give insight into the magnetic field structure, only obser
We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the $^{12}$CO $J = 3-2$ line at a spatial resolution of 8 AU (0farcs14). The CO emis