ﻻ يوجد ملخص باللغة العربية
The six-vertex model in statistical physics is a weighted generalization of the ice model on $mathbb{Z}^2$ (i.e., Eulerian orientations) and the zero-temperature three-state Potts model (i.e., proper three-colorings). The phase diagram of the model depicts its physical properties and suggests where local Markov chains will be efficient. In this paper, we analyze the mixing time of Glauber dynamics for the six-vertex model in the ordered phases. Specifically, we show that for all Boltzmann weights in the ferroelectric phase, there exist boundary conditions such that local Markov chains require exponential time to converge to equilibrium. This is the first rigorous result bounding the mixing time of Glauber dynamics in the ferroelectric phase. Our analysis demonstrates a fundamental connection between correlated random walks and the dynamics of intersecting lattice path models (or routings). We analyze the Glauber dynamics for the six-vertex model with free boundary conditions in the antiferroelectric phase and significantly extend the region for which local Markov chains are known to be slow mixing. This result relies on a Peierls argument and novel properties of weighted non-backtracking walks.
We prove an optimal $Omega(n^{-1})$ lower bound on the spectral gap of Glauber dynamics for anti-ferromagnetic two-spin systems with $n$ vertices in the tree uniqueness regime. This spectral gap holds for all, including unbounded, maximum degree $Del
We study numerically the two-point correlation functions of height functions in the six-vertex model with domain wall boundary conditions. The correlation functions and the height functions are computed by the Markov chain Monte-Carlo algorithm. Part
We show that the height function of the six-vertex model, in the parameter range $mathbf a=mathbf b=1$ and $mathbf cge1$, is delocalized with logarithmic variance when $mathbf cle 2$. This complements the earlier proven localization for $mathbf c>2$.
We develop an efficient method to compute the torus partition function of the six-vertex model exactly for finite lattice size. The method is based on the algebro-geometric approach to the resolution of Bethe ansatz equations initiated in a previous
We consider a system of classical particles, interacting via a smooth, long-range potential, in the mean-field regime, and we optimally analyze the propagation of chaos in form of sharp estimates on many-particle correlation functions. While approach