ترغب بنشر مسار تعليمي؟ اضغط هنا

Sizing and Dynamic modeling of a Power System for the MUN Explorer Autonomous Underwater Vehicle using a Fuel Cell and Batteries

624   0   0.0 ( 0 )
 نشر من قبل Mohamed Albarghot
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The combination of a fuel cell and batteries has promising potential for powering autonomous vehicles. The MUN Explorer Autonomous Underwater Vehicle (AUV) is built to do mapping-type missions of seabeds as well as survey missions. These missions require a great deal of power to reach underwater depths (i.e. 3000 meters). The MUN Explorer uses 11 rechargeable Lithium-ion (Li-ion) batteries as the main power source with a total capacity of 14.6kWh to 17.952kWh, and the vehicle can run for 10 hours. The draw-backs of operating the existing power system of the MUN Explorer, which was done by the researcher at the Holyrood management facility, include mobilization costs, logistics and transport, and facility access, all of which should be taken into consideration. Recharging the batteries for at least 8 hours is also very challenging and time consuming. To overcome these challenges and run the MUN Explorer for a long time, it is essential to integrate a fuel cell into an existing power system (i.e. battery bank). The integration of the fuel cell not only will increase the system power, but it will also reduce the number of batteries needed as suggested by HOMER software. In this paper, an integrated fuel cell is designed to be added into the MUN Explorer AUV along with a battery bank system to increase its power system. The system sizing is performed using HOMER software. The results from HOMER software show that a 1kW fuel cell and 8 Li-ion batteries can increase the power system capacity to 68 kWh. The dynamic model is then built in MATLAB/Simulink environment to provide a better understanding of the system behavior.The 1kW fuel cell is connected to a DC/DC Boost Converter to increase the output voltage from 24V to 48V as required by the battery and DC motor.



قيم البحث

اقرأ أيضاً

In this paper, we develop mixed integer linear programming models to compute near-optimal policy parameters for the non-stationary stochastic lot sizing problem under Bookbinder and Tans static-dynamic uncertainty strategy. Our models build on piecew ise linear upper and lower bounds of the first order loss function. We discuss different formulations of the stochastic lot sizing problem, in which the quality of service is captured by means of backorder penalty costs, non-stockout probability, or fill rate constraints. These models can be easily adapted to operate in settings in which unmet demand is backordered or lost. The proposed approach has a number of advantages with respect to existing methods in the literature: it enables seamless modelling of different variants of the above problem, which have been previously tackled via ad-hoc solution methods; and it produces an accurate estimation of the expected total cost, expressed in terms of upper and lower bounds. Our computational study demonstrates the effectiveness and flexibility of our models.
Until now, the fabrication of electrocatalysts to guarantee long life of fuel cells and low consumption of noble metals remains a major challenge. The electrocatalysts based on metals or metal oxides which are used today are limited by the complexity of their synthesis processes and require several steps before depositing the catalysts on the substrate. Herein is described a chemical synthesis process that consists of a single-step synthesis and direct deposition of catalysts nanoparticles such as gold (Au), palladium (Pd) and platinum (Pt) in the thickness of a carbon-fibers-based porous transport layer (PTL). The synthesis process essentially consists of dissolving in the same PGMEA (Propylene glycol methyl ether acetate) solvent a metal precursor (HAuCl4 or PdNO2 or PtCl4) and a homopolymer PMMA (Polymethylmetacrylate), then the metal solution is deposited on the surface of the PTL after cleaning. Special emphasis is made on Pt-based materials. The obtained PTL-supported nanoparticles were firstly characterized by scanning electron microscopy (SEM) to evaluate their morphology, and then X-Ray diffraction (XRD) to observe the crystal phases. To validate the methodology, Pt-coated PTL materials have been used as anode for the borohydride oxidation reaction (BOR) in a direct borohydride fuel cell (DBFC) and compared to a state-of-the-art nickel electrode. There is an optimum loading of platinum (below 0.16 mg Pt/cm2) which constitutes the best compromise between power density and faradic efficiency for the borohydride oxidation reaction (BOR). Thanks to this low Pt loading, hydrogen evolved during the anodic reaction is completely valorized. These electrodes combine the advantages of high-performance with a very low metal loading, hence lowering materials cost.
Autonomous driving has been the subject of increased interest in recent years both in industry and in academia. Serious efforts are being pursued to address legal, technical and logistical problems and make autonomous cars a viable option for everyda y transportation. One significant challenge is the time and effort required for the verification and validation of the decision and control algorithms employed in these vehicles to ensure a safe and comfortable driving experience. Hundreds of thousands of miles of driving tests are required to achieve a well calibrated control system that is capable of operating an autonomous vehicle in an uncertain traffic environment where multiple interactions between vehicles and drivers simultaneously occur. Traffic simulators where these interactions can be modeled and represented with reasonable fidelity can help decrease the time and effort necessary for the development of the autonomous driving control algorithms by providing a venue where acceptable initial control calibrations can be achieved quickly and safely before actual road tests. In this paper, we present a game theoretic traffic model that can be used to 1) test and compare various autonomous vehicle decision and control systems and 2) calibrate the parameters of an existing control system. We demonstrate two example case studies, where, in the first case, we test and quantitatively compare two autonomous vehicle control systems in terms of their safety and performance, and, in the second case, we optimize the parameters of an autonomous vehicle control system, utilizing the proposed traffic model and simulation environment.
95 - Shihe Yu , Yafen Liu , Pu Yang 2021
The neutronic properties of Molten Salt Reactor are different from that of traditional solid-fuel reactors due to its nuclear fuel particularity. Based upon MCNP code, the influence of the size and shape of fuel salt channel on neutron physics of MSR cell was studied systematically in this work. The results show that the infinite multiplication factors increases first and then decreases with the change of graphite cell size under the condition of given fuel volume fraction. In the case of the same FVF and average chord length, when the average chord length is relatively small, the k values with different fuel salt channel shapes are in good agreement; when the average chord length is relatively large, the k values with different fuel salt channel shapes are greatly different. In addition, some examples of practical application of this work are illustrated in the end, including cell selection for the core and thermal expansion displacement analysis of the cell.
This work introduces a new software package `Sesame for the numerical computation of classical semiconductor equations. It supports 1 and 2-dimensional systems and provides tools to easily implement extended defects such as grain boundaries or sample surfaces. Sesame has been designed to facilitate fast exploration of the system parameter space and to visualize local charge transport properties. Sesame is distributed as a Python package or as a standalone GUI application, and is available at https://pages.nist.gov/sesame/ .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا