ﻻ يوجد ملخص باللغة العربية
This work introduces a new software package `Sesame for the numerical computation of classical semiconductor equations. It supports 1 and 2-dimensional systems and provides tools to easily implement extended defects such as grain boundaries or sample surfaces. Sesame has been designed to facilitate fast exploration of the system parameter space and to visualize local charge transport properties. Sesame is distributed as a Python package or as a standalone GUI application, and is available at https://pages.nist.gov/sesame/ .
We propose a concentrated thermionic emission solar cell design, which demonstrates a high solar-to-electricity energy conversion efficiency larger than 10% under 600 sun, by harnessing the exceptional electrical, thermal and radiative properties of
Charge transfer in polymer devices represents a crucial, though highly inaccessible stage of photocurrent generation. In this article we propose studying the properties and behaviour of organic solar cells through the modification of photocurrent gen
Confocal laser scanning microscopy (CLSM) is a non-destructive, highly-efficient optical characterization method for large-area analysis of graphene on different substrates, which can be applied in ambient air, does not require additional sample prep
Two-dimensional (2D) materials with narrow band gaps (~0.3 eV) are of great importance for realizing ambipolar transistors and mid-infrared (MIR) detection. However, most of the 2D materials studied so far have band gaps that are too large. A few of
Conduction and valence band-edge-property variations with position as well as defects giving rise to localized states in the energy gap can play a significant role in determining solar cell performance. Understanding their effects on a device is nece