ﻻ يوجد ملخص باللغة العربية
The high cost of pixel-level annotations makes it appealing to train saliency detection models with weak supervision. However, a single weak supervision source usually does not contain enough information to train a well-performing model. To this end, we propose a unified framework to train saliency detection models with diverse weak supervision sources. In this paper, we use category labels, captions, and unlabelled data for training, yet other supervision sources can also be plugged into this flexible framework. We design a classification network (CNet) and a caption generation network (PNet), which learn to predict object categories and generate captions, respectively, meanwhile highlight the most important regions for corresponding tasks. An attention transfer loss is designed to transmit supervision signal between networks, such that the network designed to be trained with one supervision source can benefit from another. An attention coherence loss is defined on unlabelled data to encourage the networks to detect generally salient regions instead of task-specific regions. We use CNet and PNet to generate pixel-level pseudo labels to train a saliency prediction network (SNet). During the testing phases, we only need SNet to predict saliency maps. Experiments demonstrate the performance of our method compares favourably against unsupervised and weakly supervised methods and even some supervised methods.
Given a sufficiently large training dataset, it is relatively easy to train a modern convolution neural network (CNN) as a required image classifier. However, for the task of fish classification and/or fish detection, if a CNN was trained to detect o
Learning to localize and name object instances is a fundamental problem in vision, but state-of-the-art approaches rely on expensive bounding box supervision. While weakly supervised detection (WSOD) methods relax the need for boxes to that of image-
This paper presents a detection-aware pre-training (DAP) approach, which leverages only weakly-labeled classification-style datasets (e.g., ImageNet) for pre-training, but is specifically tailored to benefit object detection tasks. In contrast to the
Training temporal action detection in videos requires large amounts of labeled data, yet such annotation is expensive to collect. Incorporating unlabeled or weakly-labeled data to train action detection model could help reduce annotation cost. In thi
To reduce annotation labor associated with object detection, an increasing number of studies focus on transferring the learned knowledge from a labeled source domain to another unlabeled target domain. However, existing methods assume that the labele