ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent electrical readout of defect spins in 4H-SiC by photo-ionization at ambient conditions

58   0   0.0 ( 0 )
 نشر من قبل Matthias Niethammer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for such defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects the approach presented here holds promises for scalability of future SiC quantum devices.

قيم البحث

اقرأ أيضاً

Point defects in solids promise precise measurements of various quantities. Especially magnetic field sensing using the spin of point defects has been of great interest recently. When optical readout of spin states is used, point defects achieve opti cal magnetic imaging with high spatial resolution at ambient conditions. Here, we demonstrate that genuine optical vector magnetometry can be realized using the silicon vacancy in SiC, which has an uncommon S=3/2 spin. To this end, we develop and experimentally test sensing protocols based on a reference field approach combined with multi frequency spin excitation. Our works suggest that the silicon vacancy in an industry-friendly platform, SiC, has potential for various magnetometry applications at ambient conditions.
70 - G. Wolfowicz , S.J. Whiteley , 2018
Optically-active point defects in various host materials, such as diamond and silicon carbide (SiC), have shown significant promise as local sensors of magnetic fields, electric fields, strain and temperature. Current sensing techniques take advantag e of the relaxation and coherence times of the spin state within these defects. Here we show that the defect charge state can also be used to sense the environment, in particular high frequency (MHz-GHz) electric fields, complementing established spin-based techniques. This is enabled by optical charge conversion of the defects between their photoluminescent and dark charge states, with conversion rate dependent on the electric field (energy density). The technique provides an all-optical high frequency electrometer which is tested in 4H-SiC for both ensembles of divacancies and silicon vacancies, from cryogenic to room temperature, and with a measured sensitivity of ~41 (V/cm)**2 / $sqrt{Hz}$. Finally, due to the piezoelectric character of SiC, we obtain spatial 3D maps of surface acoustic wave modes in a mechanical resonator.
The silicon monovacancy in 4H-SiC is a promising candidate for solid-state quantum information processing. We perform high-resolution optical spectroscopy on single V2 defects at cryogenic temperatures. We find favorable low temperature optical prope rties that are essential for optical readout and coherent control of its spin and for the development of a spin-photon interface. The common features among individual defects include two narrow, nearly lifetime-limited optical transitions that correspond to $m_s{=}pm 3/2$ and $m_s{=}pm 1/2$ spin states with no discernable zero-field splitting fluctuations. Initialization and readout of the spin states is characterized by time-resolved optical spectroscopy under resonant excitation of these transitions, showing significant differences between the $pm 3/2$ and $pm 1/2$ spin states. These results are well-described by a theoretical model that strengthens our understanding of the quantum properties of this defect.
Defect spins in silicon carbide have become promising platforms with respect to quantum information processing and quantum sensing. Indeed, the optically detected magnetic resonance (ODMR) of defect spins is the cornerstone of the applications. In th is work, we systematically investigate the contrast and linewidth of laser-and microwave power-dependent ODMR with respect to ensemble-divacancy spins in silicon carbide at room temperature. The results suggest that magnetic field sensing sensitivity can be improved by a factor of 10 for the optimized laser and microwave power range. The experiment will be useful for the applications of silicon carbide defects in quantum information processing and ODMR-dependent quantum sensing.
Defects in silicon carbide (SiC) have emerged as a favorable platform for optically-active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced s pin-dependent readout and long-term charge stability of the qubits. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy (VV) and silicon vacancy (Vsi), obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from VV ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading the electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the relative charge state populations. We develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا